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Deuteron Magnetic and Quadrupole Moments with a Poincaré Covariant Current Operator
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The deuteron magnetic and quadrupole moments are unambiguosly determined within the front-form
Hamiltonian dynamics, by using a new current operator which fulfills Poincaré, parity, and time reversal
covariance, together with Hermiticity and the continuity equation. For both quantities the usual disagree-
ment between theoretical and experimental results is largely removed.
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The deuteron is a good system for a test of relativistic
approaches devoted to the investigation of hadron elec-
tromagnetic (em) properties (see, e.g., [1–5] and refer-
ences quoted therein), and in particular of the accuracy
of the one-body impulse approximation (IA) for the cur-
rent operator. It is usually believed that effects beyond
IA, e.g., meson-exchange currents, NN̄ pair creation terms
(Z graphs), and isobar configurations in the deuteron wave
function are important for the explanation of existing data.
However, these effects are essentially model dependent [6]
and, furthermore, obviously depend on the reference frame
(see, e.g., Refs. [7,8]).

A widely adopted framework for relativistic inves-
tigations of deuteron em properties is the front-form
Hamiltonian dynamics (FFHD) [9,10], where only the
two-nucleon state is considered and the wave function
of the system factorizes, for any front-form boost, in an
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eigenfunction of the total momentum times an intrinsic
wave function. Thus, deuteron em form factors, deter-
mined from three independent matrix elements of the
current, are given in terms of elastic em nucleon form
factors and deuteron internal wave function. In the FFHD,
the one-body approximation was usually applied only to
the relevant matrix elements of the plus component of the
current in the reference frame where q1 � 0 (q is the
momentum transfer), while the other ones were properly
defined in order to fulfill all the required properties (see,
e.g., [1,7,11]). In this Letter, we will consider the Breit
reference frame where the three-momentum transfer is
along the spin quantization axis, which allows one to
exploit the symmetry of the problem and to calculate all
the nonvanishing matrix elements of the current by the
same rules.

Following Ref. [8], let us consider the current which in
the Breit frame where �P� � �q� � 0 has the form
jm�K �ez� �
1
2

�J m�K �ez� 1 Lm
n �rx�2p�� exp�ipSx�J n�K �ez�� exp�2ipSx�� ,

J1�K �ez� � J2�K �ez� � � �P� � 0, P01jPJ1
free�0�Pj �P� � 0, P1� ,

�J��K �ez� � � �P� � 0, P01jP �Jfree��0�Pj �P� � 0, P1� .

(1)
In Eq. (1), P is the projector onto the subspace of
deuteron bound states jx1� of mass md and spin 1,
J

m
free�0� � J

m
p �0� 1 J

m
n �0� is the one-body current,

j �P�, P1� is an eigenstate of the total deuteron momen-
tum, �P� 	 �Px , Py�, P1 	 �P0 1 Pz�


p
2 �

1
p

2
��m2

d 1

K2�1
2 2 K�, P01 �
1
p

2
��m2

d 1 K2�1
2 1 K�, K �
Q
2, Q2 � 2q2

m, and q � P0 2 P; L�rx�2p�� is the
element of the Lorentz group corresponding to a rotation
of 2p around the x axis, Sx is the x component of
the front-form spin operator, and � means Hermitian
conjugation in internal space. From Eq. (1), one can
obtain the expression of the current in any other reference
frame by applying the proper transformations (see, e.g.,
[8]). This current operator fulfills extended Poincaré
covariance, Hermiticity, and the charge normalization, as
well as current conservation [8]. The second term in the
first line of Eq. (1), which ensures Hermiticity, introduces
two-body terms in the current, because of the presence of
Sx (see below).

A relevant result of our approach is that the extrac-
tion of elastic em form factors is no more plagued by
the ambiguities, related to the so called “angular condi-
tion,” which are present when the free current is used in
the q1 � 0 frame (see, e.g., [7,11,12]). In this case, one
has four independent matrix elements of the current, while
the em form factors are three [11]. On the contrary, in
our model [Eq. (1)], it turns out [8] that only three matrix
elements j

m
S0

z ,Sz
� �md1S0

zj j
m�K �ez�jmd1Sz� are indepen-

dent (e.g., j1
0,0, j1

1,1, and jx
1,0). Therefore, there is no longer
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any freedom in the construction of the three em form fac-
tors. These matrix elements (as well as any other one)
can be easily obtained by Eq. (1) in terms of the matrix
elements J

m
S0

z ,Sz
� �md1S0

zjJ
m�K �ez�jmd1Sz�. Indeed, by

using the properties of the Wigner D functions, one can
show that the two terms in the first line of Eq. (1) are equal
for the plus component � j1

0,0�1,1� � J1
0,0�1,1��, while for the

x component they yield J
x
1,0
2 and 2J

x
0,1
2, respectively

� jx
1,0 � �J x

1,0 2 J
x
0,1�
2� [8].

As a test of our current, we evaluate the deuteron form
factors at Q2 � 0, namely the magnetic moment md and
the quadrupole moment Qd , which are not affected by the
uncertainties in the knowledge of the neutron em form
factors at finite momentum transfers. The deuteron mo-
ments are a longstanding problem in nuclear physics, since
it was not possible to reconcile in a coherent approach
theoretical and experimental values for both quantities at
the same time, by changing the tensor content of the
nucleon-nucleon (N-N) interaction, or considering two-
body current contributions, both in nonrelativistic and in
relativistic frameworks [2,5,13,14]. Our preliminary re-
sults for the deuteron form factors at Q2 fi 0 can be
found in [15].
By using the properties [8] of the matrix elements j
m
S0

z ,Sz

the deuteron form factors can be written in terms of the
matrix elements J

m
S0

z ,Sz
[15]. Then, the magnetic moment,

in nuclear magnetons, is given by

md �
�mp

p
2 �

md
lim
Q!0

1
Q

�J x
1,0 2 J

x
0,1�

2
, (2)

while the quadrupole moment is

Qd �

p
2

md
lim
Q!0

1
Q2 �J1

0,0 2 J1
1,1� . (3)

If one adopts the free current in the q1 � 0 frame, the
angular condition is satisfied at the first order in Q, but it
is violated at the second order, for Q2 ! 0 [1]. Therefore
the angular condition is not a problem for the calculation
of md , while the quadrupole moment is not uniquely de-
termined. On the contrary, following our model, both of
them are well determined.

The matrix elements J
m
S0

z ,Sz
can be easily calculated by

using the action of the free current on a two-body state
j �P�, P1� jxS,Sz � [16]:
�p0
1, p0

2; s0
1, s0

2jJ
m
free�0� j �P� � 0, P1� jxS,Sz � �

X
s

00
1

w̄�p0
1, s0

1�
∑
2m� fis

e ��p0
1 2 p1�2� 2 fis

m ��p0
1 2 p1�2��

�p1 1 p0
1�m

�p1 1 p0
1�2

1 fis
m ��p0

1 2 p1�2�gm

∏
w�p1, s00

1 � � �k, s00
1 , s0

2jxS,Sz �
1
j

,

(4)
where w�p, s� is the front-form Dirac spinor [16], while
fis

e and fis
m are the isoscalar electric and magnetic Sachs

form factors of the nucleon. The relations between the
internal ( �k�, kz) and individual nucleon variables in our
reference frame are given by

�p1� � �p0
1� � �k�, p1

1 � jP1,

kz � v�k� �2j 2 1�, j0 � 1 1 �j 2 1�P1
P01,
(5)

where v�k� �
p

m2 1 k2, with m � �mp 1 mn�
2
the nucleon mass, and k � j �kj. Nucleon form factors
cannot be factorized in the current matrix elements,
since from Eq. (5) one has �p0

1 2 p1�2 � 24Q2�m2 1
�k2

��
�4m2
djj0�.

In FFHD, the internal deuteron wave function with po-
larization vector �eSz is given by (cf. [7])

� �kjx1,Sz � � �2p�3
2�v�k�
2�1
2y� �k�21y�2 �k�21

3

∑
w0�k�dij 2

1
p

2

µ
dij 2

3kikj

k2

∂
w2�k�

∏

3 sisy�eSz �j , (6)

where a sum over the repeated indices i, j � 1, 2, 3 is as-
sumed, y� �k� is the generalized Melosh matrix [8] and si

are the Pauli matrices. The wave functions w0�k� and
w2�k� coincide with the nonrelativistic S and D waves in
momentum representation [17], and are normalized so thatR
�w0�k�2 1 w2�k�2� d3 �k � 1.
Our FFHD results corresponding to different N-N in-

teractions are compared in Table I with the nonrelativis-
tic ones [for overcoming numerical instabilities a careful
analytical reduction of Eqs. (2) and (3) is needed]. The
standard nonrelativistic results obtained with a one-body
current crucially depend on the asymptotic normalization
ratio h of D and S wave functions and on the D-state per-
centage, PD , but one cannot obtain at the same time the
experimental values for both md and Qd . In our Poincaré
covariant calculation the relativistic corrections (RC) bring
both md and Qd closer to the experimental values, except
for the charge-dependent Bonn interaction. In Ref. [7],
RC have been calculated within FFHD by using the free
current in the q1 � 0 frame, and they resulted to be very
small for Qd , while for md were able to explain only part
of the disagreement with the experimental value. It should
be stressed that our current operator and the one used in
Ref. [7] are different, since both of them are obtained from
the free one, but in different reference frames, related by
an interaction dependent rotation.

In Fig. 1, md and Qd are reported against the asymp-
totic normalization ratio h. As already observed for the
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TABLE I. Magnetic moment (in nuclear magnetons) and quadrupole moment for the deuteron, corresponding to different N-N
interactions; m

NR
d and QNR

d are the nonrelativistic results, md (LPS) and Qd (LPS) our present results; PD is the D-state percentage,
and h � AD
AS the asymptotic normalization ratio.

Interaction PD h m
NR
d md (LPS) QNR

d �fm2� Qd (LPS) �fm2�

Expt. 0.0256(4) [18] 0.857 406(1) [19] 0.2859(3) [20]
RSC [21] 6.47 0.0262 0.8429 0.8611 0.2796 0.2852
Av14 [22] 6.08 0.0265 0.8451 0.8608 0.2860 0.2907
Paris [23] 5.77 0.0261 0.8469 0.8632 0.2793 0.2841
Av18 [14] 5.76 0.0250 0.8470 0.8635 0.2696 0.2744
Nijm93 [24] 5.75 0.0252 0.8470 0.8629 0.2706 0.2750
RSC93 [24] 5.70 0.0251 0.8473 0.8637 0.2703 0.2750
Nijm1 [24] 5.66 0.0253 0.8475 0.8622 0.2719 0.2758
CD-Bonn [25] 4.83 0.0255 0.8523 0.8670 0.2696 0.2729
nonrelativistic calculations of Qd [20,26], a remarkable
linear behavior appears for both quantities, except for the
Bonn interaction. The values of md and Qd , suggested by
this linear behavior in correspondence of hexp � 0.0256,
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FIG. 1. (a) Deuteron magnetic moment, md , as a function of
the asymptotic normalization ratio h, for different N-N inter-
actions. The full dot represents the experimental values for md
and h; empty triangles and diamonds correspond to the non-
relativistic and relativistic results of Table I, respectively, while
the solid and dashed lines are linear fits for these results. Full
triangle and diamond are the results of the CD-Bonn interac-
tion. (b) The same as in (a), but for the deuteron quadrupole
moment Qd .
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differ from the experimental ones by only 0.5% and 2%,
respectively— i.e., much less than for the nonrelativistic
results. The RC to md are rather large and the total result
is greater than m

exp
d . This shows that, within our frame-

work, even the sign of explicit contributions of two-body
currents is different from the one needed in the nonrela-
tivistic case.

In summary, our results for md and Qd , unambiguosly
calculated by a Poincaré covariant current built up from
the one-body current in the Breit reference frame where
�P� � �q� � 0, show that the total contribution of explicit
two-body currents (from meson-exchange, Z graphs, etc.)
and isobar configurations is relatively small at Q2 � 0. It
should be stressed that explicit two-body current contri-
butions, considered in addition to the ones already con-
tained in Eq. (1), must fulfill separately the constraints
imposed by the extended Poincaré covariance, Hermitic-
ity, and current conservation [8]. An evaluation in our
Breit frame of explicit two-body contributions will be per-
formed elsewhere.

The authors wish to thank A. Kievsky for kindly
providing the deuteron wave functions for RSC, Av14,
and Av18 interactions and R. Machleidt for the CD-Bonn
wave function.
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