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Irregular Orbits Generate Higher Harmonics
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The spectrum of higher harmonics in atoms calculated with a uniformized semiclassical propagator
is presented and it is shown that the higher harmonic generation is an interference phenomenon which
can be described semiclassically. This can be concluded from the good agreement with the quantum
spectrum. Moreover, the formation of a plateau in the spectrum is specifically due to the interference
of irregular, time-delayed, trajectories with regular orbits without a time delay. This is proven by the
absence of the plateau in an artificial semiclassical spectrum generated from a sample of trajectories
from which the irregular trajectories (only a few percent) have been discarded.
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Higher harmonic generation (HHG) is an intriguing and
experimentally well-confirmed phenomenon which results
from the nonlinear response of a microscopic system to a
strong laser field [1,2]. HHG has been studied in simple
but illustrative models numerically and analytically [3–6];
for reviews see [7,8]. Thereby, two striking features have
been identified, namely, the occurrence of a “plateau,”
i.e., the almost constant intensity of the harmonics over
a wide range of orders N , and the sharp “cutoff” at a
certain maximum order Nmax of harmonics. These features
have been explained in terms of a simple quasiclassical
argument [4,5].

A closer inspection, however, reveals that only the cutoff
can be explained with this argument that involves a phase
matching condition for the semiclassical amplitude impos-
ing constraints on the actions of representative classical
orbits. In the case of an initially bound electron one ob-
tains the intuitively appealing picture that the electron must
return to the nucleus in a certain time correlated with the
period (frequency) of the laser field to generate higher har-
monics [4]. If the electron has too much energy (which it
would need to generate extremely high harmonics) it is too
fast to fulfill the matching condition. Hence, the match-
ing condition does explain the cutoff, or more precisely, it
predicts that the conditions for HHG are unfavorable for
N . Nmax. On the other hand, this does not explain the
existence and origin of the plateau for N , Nmax since
the cutoff condition does not provide a reason why the
probability for HHG should be (almost uniformly) high for
N , Nmax as it is found in experiments and in numerical
simulations. Indeed, only in quantum simulations is the
plateau found; classical simulations do not yield a plateau.
This raises the question whether the plateau is due to in-
herently quantum mechanical effects, such as diffraction or
tunneling, or if it is a pure interference phenomenon that
can be explained semiclassically.

In order to answer this question one must carry out a
full semiclassical calculation of HHG which has not been
0031-9007�99�83(3)�524(4)$15.00
done so far. This is probably due to considerable technical
difficulties since the chaotic dynamics of the explicitly
time dependent problem renders a standard semiclassical
treatment (even for 1 spatial degree of freedom) in the
framework of the van Vleck propagator [9] impossible.
However, using a uniformized propagator following the
ideas of Hermann and Kluk [10,11] we have succeeded
in obtaining a converged semiclassical spectrum of HHG.
Moreover, we are able (i) to prove that HHG is a pure
interference effect, and (ii) to identify the different types
of trajectories which interfere with each other.

We have performed our calculation with the “canonical”
model system for the interaction of a strong laser field with
a one-electron atom, described by the Hamiltonian,

H � p2�2 1 V �x� 1 E0x cosvt , (1)

where V �x� � 2�x2 1 a2�21�2 with a2 � 2 is the so-
called “soft core” potential (atomic units are used if not
stated otherwise). With this choice of a the ground state
energy in the potential V corresponds to that of hydrogen,
E � 21�2 a.u. The other parameters which will be used
are E0 � 0.1 a.u. and v � 0.0378 a.u. We propagate a
wave packet C�x, t� according to

jC�x, t�� � U�t� jC�x, 0�� . (2)

The initial wave packet has its center x0 � E0�v
2
0 � 70

atomic units away from the nucleus (located at x � 0) and
is defined as
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with Dab � a 2 b, g � 0.2236 a.u., and p0 � 0 a.u.
Under these conditions of a scattering experiment the
cutoff for HHG occurs at 2Up � �E0�v�2�2; see also [6]
© 1999 The American Physical Society
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where the same initial conditions have been used. Only
the width g was chosen differently in [6]; however the
cutoff does not depend on g.
The Gaussian form of c�x, 0� allows one to express the
semiclassically propagated wave function in closed form
as an integral over phase space [11],
C�x, t� �
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where S�pt , qt� is the classical action of a trajectory at t, and

Rg�pt , qt� �
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(5)
is composed of all four blocks Mab � ≠2S��≠a≠b� of the
monodromy matrix.

From the time dependent wave function we construct the
dipole acceleration,

d�t� � 2

*
C�t�

É
dV �x�

dx

É
C�t�

+
, (6)

from which the harmonic spectrum

s�v� �
Z

d�t�eivt dt (7)

is obtained by Fourier transform. Typically 106 trajec-
tories are necessary to converge d�t� from Eq. (6). For
comparison we have also determined d�t� quantum me-

0 40 80 120
Harmonic Order

10
-6

10
-5

10
-4

σ(
ω

) 
[a

.u
.]

10
-6

10
-5

10
-4

σ(
ω

) 
[a

.u
.]

10
-6

10
-5

10
-4

σ(
ω

) 
[a

.u
.]

(a)

(b)

(c)

FIG. 1. Quantum (a), classical (b), and semiclassical (c)
spectrum of higher harmonics according to Eq. (7).
chanically (Fig. 4) using standard fast Fourier transform
split operator methods to compute the wave function
C�x, t�.

Figure 1 demonstrates that a plateau and a cutoff are
visible in the quantum (a), and in the semiclassical (c)
harmonic spectrum, but not in the classical (b) one. Since
the semiclassical spectrum (c) and the quantum spectrum
(a) are very similar we may conclude that HHG can be
described semiclassically. (Small differences at the abso-
lute level of s � 1026 a.u. beyond the cutoff frequency
can be attributed to the limited numerical accuracy of the
semiclassical propagation.) Furthermore, the absence of
the plateau in the classical spectrum (b) suggests that it is
due to an interference effect of different types of classical
trajectories contributing to the semiclassical result (c).

Among the classical trajectories from which the semi-
classical dipole acceleration Eq. (6) is constructed we can
distinguish trajectories which suffer a time delay when
passing the nucleus (i.e., x � 0) from the “mainstream”
trajectories which are not slowed down. Furthermore,
among the time-delayed trajectories we can identify two
groups.
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FIG. 2. Examples for direct (dashed line), stranded (dotted
line), and trapped (solid line) trajectories; see text.
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FIG. 3. Deflection function qt�pi� for t � 3T and xi � x0 � 70 a.u. demonstrating the chaotic character of the trapped
trajectories. The arrows indicate the range of the next higher enlargement.
Trajectories of the first group (dotted line in Fig. 2) get
“stranded” on top of the barrier of the effective potential
Veff�x� � V �x� 2 E0x. The second group is formed by
trajectories which become temporally “trapped,” (solid
line in Fig. 2). The trapped trajectories are chaotic in
the sense of an extreme sensitivity to a change in initial
conditions. This is clearly seen in the deflection function
qt�pi� (Fig. 3) where the final position qt of a trajectory at
fixed time t is plotted versus its initial momentum pi [12].

One sees that in certain intervals of pi small changes
in pi lead to a completely different qt with the result that
the deflection function exhibits a fractal structure. The
fractal initial conditions (for a fixed final qt) belong to
those trajectories which are trapped in the potential for a
certain dwell time (the solid lines in Fig. 2).

The time-delayed irregular orbits are responsible for the
higher harmonics since their contributions interfere with
those from the mainstream trajectories. The interference
manifests itself in a dephasing in the dipole response
d�t� of Eq. (6) after the first encounter with the nucleus
(roughly after the time t � T � 2p�v for our initial
conditions) as can be seen in Fig. 4(b). At this time the
peak at about pi � 20.45 a.u., emerges in the deflection
function; see Fig. 3. This corresponds to the return of
the nucleus in the case of an initially bound electron as
discussed, e.g., in [4,5]. The rich structure of this peak
emerges for longer times (see Fig. 3) necessary to resolve
the fractal dynamics on a fine scale of the initial conditions
pi . The dephasing in d�t� is clearly an interference
phenomenon since it does not occur in the classical dipole
response (Fig. 4a).

Having identified the orbits, or equivalently, the ini-
tial conditions, which are responsible for the higher har-
monics we can artificially construct a harmonic spectrum
without those contributions to double check that they are
really responsible for HHG. This has been done in the
semiclassical spectrum of Fig. 5b where the time-delayed
trajectories (about 3% of all initial conditions) have been
discarded. Clearly, the plateau has disappeared and the
spectrum is similar to the purely classical spectrum with
526
trajectories for all initial conditions included (Fig. 1b).
Discarding only the trapped trajectories (0.6%) smears out
the cutoff and leaves a reduced plateau for lower harmon-
ics (Fig. 5a). Hence, the quantitative semiclassical repro-
duction of the quantum HHG spectrum together with the
absence of higher harmonics in the classical case (Fig. 1)
and in the semiclassical case if irregular, time-delayed tra-
jectories are discarded (Fig. 5) confirms our explanation
of the origin of the higher harmonics.

To summarize we have shown that higher harmonic gen-
eration can be interpreted as a semiclassical interference
effect between regular and time-delayed trajectories of the
electron. The time delay is either due to a temporal trap-
ping which generates chaotic dynamics or due to a strand-
ing on top of the potential barrier. Along with this time
delay goes a characteristic difference in action compared
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FIG. 4. Classical (a) and semiclassical (b) dipole acceleration
according to Eq. (6).
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FIG. 5. Semiclassical HHG spectrum as in Fig. 1 but without
trapped trajectories (a), and without time-delayed trajectories
(b); see text.

to the undelayed mainstream orbits. Analytical quasiclas-
sical approximations of various kinds have been used to
derive this phase difference which can explain the cutoff
[4,5]. However, as demonstrated here, the full semiclassi-
cal expression is far more complicated since for the HHG
spectrum chaotic trajectories exhibiting a fractal deflection
function are essential. The chaotic character of the irregu-
lar orbits allows them to have a relative large effect in com-
parison to their weight among all initial conditions (of the
order of 1%) because their instability leads to a dramatic
increase of their weight Rg in Eq. (5) in the course of time.
This increase makes an accurate semiclassical computation
rather difficult. Remarkably, despite the chaotic dynam-
ics of the trapped trajectories, one can obtain a converged
semiclassical spectrum if a proper semiclassical propaga-
tor such as the Hermann-Kluk propagator is used which
does not break down at the (abundantly occurring) caustics.
The resulting semiclassical harmonic spectrum agrees well
with the quantum spectrum.
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