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We obtain the complete nonlinear Kaluza-Klein ansatz for the reduction of the bosonic sector of
massive type IIA supergravity to the Romans F(4) gauged supergravity in six dimensions. The latter
arises as a consistent warped S4 reduction.
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The conjectured duality between supergravity on an
anti–de Sitter (AdS) background and a superconformal
field theory (CFT) on its boundary [1–4] has led to a
renewed interest in the mechanism whereby the relevant
gauged supergravities can be obtained by Kaluza-Klein
reduction from higher dimensions. It has long been
known that the maximal gauged theories in D � 4
and D � 7 can be obtained by reduction of eleven-
dimensional supergravity on S7 or S4, and that the
maximal gauged theory in D � 5 can be obtained from
an S5 reduction from type IIB supergravity. In each
case, it is believed that the reduction is consistent, in the
sense that the reduction ansatz, with its truncation to the
fields of the supergravity multiplet, satisfies the higher-
dimensional equations of motion provided that the lower-
dimensional equations of motion are satisfied. This is
important in the context of the AdS/CFT correspondence,
since it implies that massive fields can be ignored when
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calculating correlation functions in the conformal field
theory [3].

A long-standing puzzle has been to obtain a higher-
dimensional Kaluza-Klein interpretation for the gauged
supergravity theory in six dimensions [5], whose dual
description on its boundary is a five-dimensional N � 2
superconformal field theory [6,7]. It was suggested in [8]
that it could be related to the ten-dimensional massive type
IIA theory [9]. Recently, it was shown that the massive IIA
theory admitted an AdS6 3 S4 solution, with a “warped-
product” metric [10]. This was derived as the near-horizon
limit of a localized D4-D8 brane configuration [11].

In this Letter we resolve the puzzle by obtaining
the complete nonlinear bosonic Kaluza-Klein ansatz for
the reduction of the massive IIA theory on S4, and
showing that it gives a consistent truncation to the six-
dimensional gauged theory. Our starting point is the
bosonic Lagrangian of massive type IIA supergravity [9].
In the language of differential forms, it is given by [12]
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where the field strengths are given in terms of potentials by
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In the above, we have used the caret to denote the ten-
dimensional fields and Hodge dual, and subscripts on
form fields indicate the degrees of the forms. It follows
that the equations of motion and Bianchi identities are
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dF̂�4� � F̂�2� ^ F̂�3�, dF̂�3� � 0, dF̂�2� � mF̂�3� ,
for the form fields and dilaton, together with the Einstein equation (in vielbein components)
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We shall now describe how we can perform a 4-sphere reduction of the massive IIA theory, with a consistent
truncation to the fields of gauged N � 1, D � 6 supergravity. The bosonic fields in this theory comprise the metric, a
dilaton, a 2-form potential, and a 1-form potential, together with the gauge potentials of SU(2) Yang-Mills theory. The
bosonic Lagrangian [5], converted to the language of differential forms, is

L6 � R � ' 2
1
2

� df ^ df 2
1
2

e2
p

2f � F�3� ^ F�3� 2 g2

µ
2
9

e�3�
p

2 �f 2
8
3

e�1�
p

2 �f 2 2e2�1�
p

2 �f
∂

� '

2
1
2

e�1�
p

2�f��F�2� ^ F�2� 1 �Fi
�2� ^ Fi

�2��

2 A�2� ^

µ
1
2

dA�1� ^ dA�1� 1
1
3

gA�2� ^ dA�1� 1
2
27

g2A�2� ^ A�2� 1
1
2

Fi
�2� ^ Fi

�2�

∂
, (5)

where F�3� � dA�2�, F�2� � dA�1� 1
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Hodge dual.

We find that the reduction ansätze for the metric, form fields, and dilaton of the ten-dimensional massive type IIA
theory are
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F̂�3� � s2�3F�3� 1 g21s21�3cF�2� ^ dj ,

F̂�2� �
1
p

2
s2�3F�2�, ef̂ � s25�6 D1�4X25�4,
where X is related to the dilaton f in (5) by X �
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The quantities si are left-invariant 1-forms on S3, which
satisfy dsi � 2
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to the mass parameter m of the massive type IIA theory
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p
2�3�g.

It is useful also to present the expressions for the ten-
dimensional Hodge duals of the form fields given above,
and for df̂. We find that they are given by
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where e�6� is the volume form of the metric ds2

6.
If we set X � 1 and Ai

�1� � 0, then ds2
6 becomes an Einstein metric, which can, for example, be AdS6. In this case,

the ten-dimensional geometry becomes AdS6 3 S4 with a warp factor [10].
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which is the near-horizon limit [10] of a localized D4-
D8 brane configuration [11]. [To be more precise, the S4

here is not really the entire 4-sphere, but rather just the
upper hemisphere of a 4-sphere, viewed as a foliation of
3-spheres [10]. This is because the conformal warp factor
�sinj�1�12 approaches zero as the “latitude” coordinate j

approaches the equatorial 3-sphere at j � 0, thus defining
a boundary to the 4-manifold.] The configuration is a
solution of the massive type IIA theory, where the AdS6

metric ds2
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When the fields X and Ai
�1� are excited, X parametrizes in-

homogeneous deformations of the 4-sphere, leaving the fo-
liating 3-spheres intact, while Ai

�1� describes deformations
of the 3-spheres corresponding to right translations under
SU(2).
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Substituting the ansätze (6) into the equations of motion
and Bianchi identities (3) for the form fields and dilaton of
the massive type IIA theory, we find that they are satisfied
provided the six-dimensional fields satisfy the following
equations of motion:
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where D is the Yang-Mills gauge-covariant exterior
derivative, Dvi � dvi 1 geijkA

j
�1� ^ vk . Note that the

Bianchi identities for F̂�3� and F̂�2� are satisfied identically,
while that for F̂�4� already implies the equations of motion
for F�3� and F�2�.

Evaluating the ten-dimensional Einstein equation (4)
with the ansätze (6) is a more exacting task. After doing
so, we find that consistency again requires the equations
of motion for Fi

�2� and X given in (11), and in addition it
implies the six-dimensional Einstein equation
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It is now straightforward to see that the full set of
six-dimensional equations of motion (11) and (12) are
precisely those which follow from the Lagrangian (5) for
N � 1, D � 6 gauged supergravity.

In our derivation, the consistency of the reduction
ansatz is definitively established, since we have explicitly
substituted it into the higher-dimensional equations of
motion, and shown that these equations are satisfied if
and only if the lower-dimensional equations of motion
are satisfied. This is, by definition, what one means by
a consistent Kaluza-Klein reduction. The Kaluza-Klein
reduction procedure is sometimes stated instead at the
level of the action; namely, that one would substitute
the ansatz into the higher-dimensional action, integrate
over the internal directions, and thereby arrive at an
action for the lower-dimensional fields. Of course, in
such an approach, it would be necessary to construct an
independent argument for why the reduction ansatz was
a consistent one. However, there are other reasons also
why substituting the ansatz into the Lagrangian might be
problematic. To illustrate this, it is instructive to look at
the reduction we have considered in this Letter, simplified
initially by restricting the fields to just the metric and the
dilaton.

In the gravity-scalar sector, the ansatz for the field
strengths can be rewritten in terms of the potentials, since
we can then write Â�3� � �1�4

p
2 �g23s4�3�3 1 2c2 3

D21X23�e�3�, as may be seen from (6). Substitut-
ing this and the other nonzero ansätze into the ten-
dimensional Lagrangian (1) gives L10 � 1
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Although the R and �≠f�2 terms have a uniform
j-dependent prefactor, the term W , associated with the
scalar potential, does not. Integration over the internal
coordinate j does not really make sense, since there
is a divergence at j � 0. One can make a suitable
regularization and thereby obtain the scalar potential as
given in (5), but this is unsatisfactory since the result is
scheme dependent. [The occurrence of the divergence
is associated with the fact that the metric in (6) has the
warp factor �sinj�1�12, which vanishes at j � 0. This
singular behavior is an inherent feature of the massive
type IIA theory, resulting from the scalar potential e�5�2�f̂,
which has no stationary point. (Since the dilaton also
diverges as j approaches zero, implying a passage to the
strong-coupling regime of the type I string theory, the
effective supergravity will in any case receive modifica-
tions.) An analogous calculation in the S4 reduction of
eleven-dimensional supergravity, where no j-dependent
warp factor arises, is free from any singular behavior
[13].] Moreover, when the higher-degree fields of the six-
dimensional theory are included, it is no longer possible
to rewrite the ansatz for F̂�4� in (6) as an ansatz for Â�3�.
We thus expect in this case that one would not be able to
obtain the six-dimensional Lagrangian (5) by substituting
the ansätze into the ten-dimensional one. It should be
emphasized, however, that this is not a drawback in the
reduction procedure; rather, it just serves to illustrate that
Kaluza-Klein reduction is in general rather more subtle
than in the simple case of toroidal reduction. The key
point is that given a consistent reduction, one has a way of
embedding solutions of the lower-dimensional equations
of motion as solutions of the higher-dimensional ones.

An example of such a six-dimensional solution is an
AdS black hole, supported by a single component of the
SU(2) Yang-Mills fields. We find that the solution is
given by

ds2
6 � 2H23�2f dt2 1 H1�2� f21 dr2 1 r2 dV2

4,k� ,

f �
1
p

2
logH, A3

�1� �
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2k �1 2 H21� cothb dt ,

f � k 2
m

r3 1
2
9

g2r2H2, H � 1 1
m sinh2b

kr3 ,

(14)

where we have, for definiteness, chosen to use the i �
3 component of the Yang-Mills fields Ai

�1�. Another
example is a supersymmetric domain wall, supported by
the scalar potential [14]. It is straightforward to oxidize
these solutions to ten dimensions, using our ansätze (6).
If the parameter m is set to zero in the AdS black-
hole solution, the six-dimensional metric becomes simply
AdS6, and, as we remarked previously, the oxidation to
D � 10 gives the near-horizon limit of the localized D4-
D8 brane configuration (in the case k � 0). When m

is instead nonzero, we expect that the ten-dimensional
interpretation will be that the D4-D8 brane system will
acquire a rotation, with angular frequency equal to the
black-hole charge, analogous to the cases discussed in
[15,16].

Another solution of the six-dimensional theory is the
nonsupersymmetric AdS6 [5], corresponding to the sec-
ond stationary point X � 321�4 of the potential. It is in-
teresting to note that the factor D appearing in the metric
ansatz (6), which takes the value D � 1 in the X � 1
supersymmetric AdS6 solution, now takes the form D �
321�4�1 1 2 sin2j�, implying an inhomogeneous distor-
tion of the 4-sphere.

To summarize, we have derived the gauged six-
dimensional supergravity by performing a consistent
Kaluza-Klein reduction of massive type IIA supergravity.
(For the sake of simplicity, we concentrated on the full
bosonic sector of the theories; the fermionic sector will
be addressed elsewhere.) The metric ansatz describes a
warped product of the six-dimensional spacetime and a
4-sphere. The warp factor depends on the latitude coor-
dinate of the 4-sphere, viewed as a foliation of 3-spheres.
Since it vanishes on the equator, the geometry of the inter-
nal space is really the upper hemisphere of the 4-sphere,
with the equator as boundary. (This is the region where
type I string theory becomes strongly coupled, and on the
dual weakly coupled heterotic string theory side a gauge
enhancement takes place.) We presented examples of
six-dimensional solutions that can now be reinterpreted as
solutions of the massive IIA theory. More generally, our
construction opens the door to the higher-dimensional rein-
terpretation of any solution of the six-dimensional theory,
including, for example, non-Abelian configurations.
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