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As a nonlinear optical system consisting of a Kerr medium inserted in a feedback loop is ex
to a light intensity growing linearly from below to above the threshold for pattern formation,
critical slowing down around threshold freezes the defect population. The measured number of
immediately after the transition scales with the quench time as predicted by Zurek for a two-dimen
Ginzburg-Landau model. The further temporal evolution of the defect number is in agreement
simple annihilation model, once the drift of defects specific for our system is taken into account.
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Symmetry-breaking transitions are a fundamental su
ject of research in many fields of physics from condens
matter in thermodynamical equilibrium [1] to nonequilib
rium systems that undergo bifurcations [2], possibly lea
ing to patterned states in spatially extended systems
With reference to cosmological models, Kibble [4] stress
that topological defects may have played a fundamen
role in the evolution of the early Universe. Zurek [5] cap
tured the general feature of the rapid crossing of the thre
old region, pointing out the formal similarity between th
cosmological phase transition and some accessible lab
tory situations, thus opening the field to a series of the
retical and experimental considerations [6–9]. All the
phenomena can be described by a complex field in a qu
tic potential, as the coefficient of the quadratic term (co
trol parameter) is driven from positive (below threshold
to negative (above threshold) over a quench timetq. A
central issue is the evaluation of the correlation length
the field as a function oftq which is the time scale of
the control parameter variations. This correlation leng
has been shown to be given by the average separatio
nearest-neighbor topological defects of the field under c
sideration [10,11]. The transient behavior has been m
eled and verified in a recent series of papers [12–14]
which the defect numberN at the end of the quench time
tq and its successive evolution have been reported. Fr
an experimental point of view, phase transitions in liqu
crystals [15] and in superfluid helium [6–9] have reveal
the occurrence of transient phenomena related to defe
but the key prediction of the power-law dependence of t
defect number withtq has not yet been verified.

In this Letter we report the statistics of defects that for
in a two-dimensional (2D) nonlinear optical system as t
incident light intensity (control parameter) ramps linear
from below to above the threshold for pattern formatio
within a quench timetq. The initial numberN at the

end of the quench follows the scaling lawt
21�2
q and its

successive time evolution is ruled by the combined act
of mutual defect annihilation and escape due to drift.
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The experimental setup consists of a liquid crystal lig
valve (LCLV) illuminated by a spatially uniform laser
beam and inserted in a feedback loop (see Fig. 1). With
a suitable parameter range, the LCLV acts as an opti
Kerr medium. As a result, the beam reflected from th
front face of the LCLV undergoes a phase retardatio
proportional to the light intensity applied to the rear fac
of the valve. Optical pattern formation in a Kerr-like
medium with various types of feedback has been stud
both theoretically [16] and experimentally [17]. Whe
the feedback loop includes a free propagation lengthL
introducing diffraction in the optical wave, patterns ar
due to the interplay of the Kerr effect with the diffusion
of the refractive index perturbation and the diffraction
Introduction of a nonlocal interaction by means of
transverse displacement of the optical wave front with
the feedback loop induces a new class of pattern-formi
instabilities [18,19]. The equation for the evolution of th
phase of the beam reflected by the LCLV front face is

t
≠u
≠t

� 2u�x, y, t� 1 l2
d=2

�u�x, y, t�

1 aIfb�x 1 Dx, y, t� , (1)

wheret and ld are, respectively, the response time an
the diffusion length of the liquid crystals, and�x, y� are
the coordinates in the plane transverse to the propaga
direction z. The cell thickness is less than a diffusio
length, henceu has no z dependence and=2

� is the
Laplacian operator in the�x, y� plane. Ifb�x 1 Dx, y, t�
is the feedback intensity displaced by the amountDx
along x, and a gives the strength and sign of the Ker
nonlinearity. We usea negative (defocusing case).Ifb is
proportional to the input intensityI0, which we take as the
control parameter, and it includes the effects of dephas
through the cell, diffraction along the propagation leng
L, and lateral displacementDx. Calling I0th the intensity
at the threshold for pattern formation, we rescaleI0 as
e � I02I0th

I0th
. Close to threshold, the normal form equatio

for the slowly varying amplitudeA of u corresponding to
© 1999 The American Physical Society
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Eq. (1) is a complex Ginzburg-Landau equation with the
addition of a drift term proportional to the gradient of A
along x and to a group velocity y � 2aI0Dx�t.

The experimental results refer to a fixed wavelength
(632 nm) and polarization (parallel to the liquid crystal
director) of the incoming beam and the value of the
transverse shift is Dx � 110 mm. In these conditions the
solution for the intensity pattern is a set of standing rolls
perpendicular to Dx [18]. While, however, the rolls have
zero phase velocity, any local defect is swept away at
the group velocity y. The symmetry-breaking transition
occurs as the input intensity ramps linearly from a value
ei below threshold to a value ef corresponding to a stable
roll-like pattern, within a quench time tq. The ramp is
obtained by passing the input beam through a computer-
controlled acousto-optic modulator and the corresponding
dynamics is video recorded and successively analyzed.
This way we can realize different tq ’ s, thus systematically
testing how the defect number N at the bifurcation scales
with tq and how it decays in the course of time.

We recall the heuristic derivation of the scaling law
for N vs tq [13]. Consider a 2D field subject to a
second order phase transition controlled via a ramp of
a parameter e over a time tq (e � t�tq, where e � 0
is the threshold point). The system dynamical response
time is t � t0�e, t0 being its inertial time scale. The
correlation length is given by j � j0�e1�2, where j0
is a suitable correlation length far from the transition.
When e is so close to zero that t is larger than the time
separation t̂ from the threshold, the field is no longer
able to follow the control parameter variation, due to
the critical slowing down. This situation occurs for t ,
p

t0tq � t̂. Hence, in the time interval 2t̂ , t , t̂, the
correlation length in the system is frozen at a value j�t̂� �
j0�e�t̂�1�2 � j0�tq�t0�1�4. In a two-dimensional system
of size l, assuming that a correlation length corresponds
to the average separation of nearest-neighbor topological

FIG. 1. Experimental setup: O � microscope objective; P1,
P2 � pinholes; BS1, BS2 � beam splitters; LCLV � liquid
crystal light valve; L1, L2 � lenses of focal length f; FB �
fiber bundle; X � direction of feedback displacement; CCD �
videocamera; L � free propagation length (in the experiment
L � 3.5 cm).
defects, it follows that the number N of defects will scale
as N � �l�j�2 ~ t

21�2
q .

A formal similarity between our experimental system
and the model of Ref. [13] can be established on the basis
that in both cases we are in the presence of a supercritical
bifurcation of a complex field. In our case this field
represents the slowly varying amplitude of the bifurcating
roll pattern; however, due to the nonlocal interaction in
the feedback loop, the bifurcated pattern has in general
nonzero phase and group velocities. While the former
can be set to zero by means of an adequate choice of
the operating parameters, the latter is always finite; as a
result, the defects in the system are subject not only to
annihilation but also to a drift at constant velocity toward
one of the boundaries.

Figure 2 is the principal result of our paper; it shows the
number of defects measured for various tq values. For
each value tq, the pump parameter is varied from ei �
20.64 to ef � 0.64. The threshold e � 0 corresponds to
I0th � 200 mW�cm2. The plot is obtained by counting
the number of defects produced in each transition at the
moment tfin � tq�2 in which the intensity reaches its
final value. In our case, as clearly visible in Fig. 3,
defects are swept away from the system due to the drift.
Precisely, if the whole system is a rectangle of area
h 3 l0 (l0 being parallel to Dx and hence to y), the part
of the system in which perturbations to the roll solution
(e.g., defects) can survive at the time t is a shrinking
rectangle of area A�t� � h 3 l�t�, l�t� � �l0 2 yt�. The
defect numbers reported in Fig. 2 are corrected in order to
be always referred to the whole system area. The straight
line is the best fit to �N� � N0t2a

q with a � 0.50 6 0.04.
This exponent is in good agreement with the theoretical
prediction a � 21�2. The range of spanned tq is limited
by the following factors. On the side of short tq, it makes

FIG. 2. Defect number obtained in a sequence of phase
transitions for various tq values. The counting is done at the
moment in which the intensity reaches its final value and the
results are corrected in order to refer to the whole system
area. The straight line is the best fit to N � N0t

2a
q with

a � 0.50 6 0.04.
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FIG. 3. Intensity patterns showing the evolution of the num-
ber of defects with time for a phase transition with tq � 0.41 s.
An open circle traces the drift of a defect far enough from other
ones, to avoid annihilation within the observation.

no sense to apply a ramp on a time scale faster than, or
comparable to, the inertial time scale t0 that is of the order
of 100 ms. On the side of long tq, it is meaningless to
let the system evolve over a time longer than the time
l�y over which any perturbation will be swept away by
coherent transport. In our experiment the system size is
l0 � 10.35 mm and the group velocity y � 2 mm�s for
e � 0.64, leading to a maximum value of tq at about 5 s.

We then measure the evolution of the defect number
with time, by counting the defects in a series of images
of the type shown in Fig. 3 for the case tq � 0.41 s.
Since here we are studying the decay of the defect
number starting from the end of the quench, that occurs
at tfin � tq�2, we take this value as the time origin. In
the absence of drift, N decreases because of annihilation
processes. The annihilation rate is expected to be of the
form �N � 2xN2, being proportional to the frequency
with which defects encounter one another [13]. This
leads to the evolution law N�t�21 � N21

�t�0� 1 xt, already
confirmed in a liquid crystal experiment [15].

In our experiment, the decrease of the defect number
in the course of time is due both to the annihilation
mechanism with a rate �N � 2gN2�A�t� and to the
escape from the boundary at a rate 2Ny�l�t�. We thus
have the solution

N�t� �
N0�1 2 yt�l0�
1 1 gN0t�A�0�

, (2)

where N0 is the initial number of defects in the area A�0�.
In Fig. 4 we report the experimental measurements and
their relative fits with Eq. (2) for three different values of
tq. The theoretical curves are in good agreement with the
experimental data as we can see from the values of g and
y reported in the figure caption.
5212
FIG. 4. Experimental measurements (symbols) and relative
fits with Eq. (2) (lines) of the temporal evolution of the
defect number for three different values of tq. The best fit
values for the parameters y and g result: y � 1.37 mm�s,
g � 0.71 mm2�s; y � 1.63 mm�s, g � 0.66 mm2�s; y �
1.1 mm�s, g � 0.88 mm2�s.

In order to have an insight to the range of times
over which the process of annihilation dominates, we
report also 1�N vs t for tq � 0.41 s in Fig. 5. The
plot includes the experimental points, the fit with Eq. (2),
and the straight line obtained by putting y � 0 in
Eq. (2). Expanding the expression of 1�N for t ! 0,
the quadratic term in t becomes appreciable for t $ t� �
1.93 s. As we can clearly see in Fig. 4, for t , t� the
linear fit is good, meaning that annihilation dominates
the drift, thus recovering the results expected in [13] and
observed in [15].

In summary, we have studied experimentally the tran-
sient statistics of the topological defects in a system with a
complex order parameter swept in time across a supercrit-
ical bifurcation. Both the dependence of the early defect
number on the sweep speed as well as its successive delay
rate at later times confirm the theoretical predictions. In
the first case, the defect rate dependence upon the sweep

FIG. 5. 1�N vs t for tq � 0.41 s: experimental data (dots), fit
with Eq. (2) (dashed line), and straight line obtained by putting
y � 0 in Eq. (2).
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time is a power law with a 21�2 exponent. In the second
case, once we account for a drift peculiar to our system,
the defect annihilation model, based on a mass-action-like
law, results are confirmed.
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