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We study a nonlinear response of the underdamped generalized Frenkel-Kontorova model (a system of
interacting atoms placed into an external periodic potential) on the dc driving force. Both studied variants
of the model, one with a transverse degree of freedom, and another with two-dimensional isotropic
substrate potential, exhibit an interesting “fuse”-like behavior: at small forces the system is in the regime
of running kinks with a nonzero conductivity, while at higher forces the system is trapped in an immobile
state. This behavior is explained in terms of a dynamical transition between two states of kinks.

PACS numbers: 05.45.Yv, 05.70.Ln, 66.30.–h, 63.20.Ry
Driven diffusive systems belong to the simplest models
of nonequilibrium statistical mechanics. For example,
the Frenkel-Kontorova (FK) model [1] (i.e., an atomic
chain placed into external periodic potential and driven
by the dc force F) has a wide application area in mod-
eling of charge and mass transport in solids, tribology
etc. [2–7]. When the force F changes, this system
exhibits a complicated (multistep and hysteretic in the
underdamped case) transition from the locked state,
where the average system velocity �y� is zero, to the
sliding state, where all atoms move with the maximum
velocity �y� � F�mh (here h is the external damp-
ing and m is the atomic mass). Various intermediate
regimes can be described by resonance phenomena [4,7],
and by the moving quasiparticle excitations of the FK
model, kinks [6].

All the scenarios observed until now have, however,
one common feature: the drift velocity �y� monotonically
increases with F. In the present Letter, we report the
first, to the best of our knowledge, observation of the
nonmonotonic scenario, when the system has a nonzero
conductivity (�y� fi 0) at low forces and becomes locked
(�y� � 0) at higher forces. Generally, to exhibit such
a behavior which resembles a “fuse safety device” on
an atomic scale, the system should have the following
ingredients: (i) the mobile ground state, (ii) a close
metastable state, which is immobile at the same forces,
and (iii) with increasing of the applied force F the
system should be moved from the mobile state to the
immobile one, thus locking itself. Such a situation may
in principle be organized in various systems. Here we
describe the fuse scenario for two simple mechanical
models of interacting atoms having more than one spatial
dimension.

(A) The FK model with a transverse degree of freedom
[8], i.e., the chain of atoms of unit mass subjected to the
2D external potential sinusoidal with the amplitude ´ � 2
and the period a � 2p in the x direction (along the chain),
0031-9007�99�83(25)�5206(4)$15.00
and parabolic in the transverse direction y,

Vs�x, y� � 1 2 cos�x� 1
1
2

v2
yy2. (1)

(B) The 2D isotropic FK-type model, i.e., the array of
atoms adsorbed on the periodic 2D substrate of the square
symmetry,

Vs�x, y� � �1 2 cos�x�� 1 �1 2 cos� y�� . (2)

For the model A an isolated atom near the potential min-
ima has the frequency of x vibration vx � 1, while the
frequency of transverse y vibration is given by vy . For
the model B the vibrations near the minima are isotropic,
vx � vy � 1. If the force is applied along x, the isolated
atom starts to slide at the critical force Fcrit 	 p´�a � 1.

In both models the motion is governed by Langevin
equations,

�̈ri 1 h ��ri 1
dVs��ri�

d �ri
1

d
d �ri

X

jfii

Vi�j�ri 2 �rjj� � �F ,

(3)

where �ri � �xi , yi� for the ith atom, and �F � �F, 0� is
the external dc force. We take the exponential interac-
tion between the atoms corresponding to the repulsion of
atomic cores, Vi�r� � V0e2br , where r is the distance,
b determines the interaction range (in simulation we used
b � 1�p so that a “diameter” of the atom is 2p), and the
amplitude V0 can be expressed for the sake of convenience
as V0 � g�pe�2, where g is the so-called discreteness pa-
rameter, g 	 V 00

i �2p��v2
x . The periodic boundary condi-

tions are imposed in the x (model A) or in both x and y
directions (model B) in order to fix the atomic density. In
the simulation we first look for the minimum-energy state
of the system, then adiabatically change the force and mea-
sure the average drift velocity �y� for a given F.

Let us consider the situation when each potential well
is filled with one atom (the commensurate structure), plus
some excess atoms are added, which in the ground state
form localized compressions, or kinks. For example, in
© 1999 The American Physical Society
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the model A, we place N atoms on the M wells, thus hav-
ing Nk � N 2 M kinks in the chain with dimensionless
concentration u � N�M. In the model B, this is repeated
for every row y � 2pn, n being an integer.

The kinks are known as the effective mass carriers, since
they start to slide at a force much smaller than Fcrit � 1.
The specificity of both studied 2D models, by contrast with
the one-dimensional FK model, is that the extra spatial di-
mension allows for the transverse y “orientation” of the
kinks. We show here that the increasing force, applied
along x, can turn the sliding kinks transversely so that they
stop, and the system ends up locked. Our main result, the
kink velocity [defined as yk � �y�N�Nk] versus the exter-
nal force F at different frictions h and concentrations u,
is shown in Figs. 1a and 2a for the models A and B corre-
spondingly. The “fused” behavior can be seen clearly: an
initially linear growth of yk with F saturates as soon as the
kinks reach certain critical velocity, followed by the drop
of yk to zero. Figures 1b and 2b reveal that this process
is accompanied by the growing transverse y displacements
of the atoms. Below we analyze this phenomenon in more
detail for both studied models.

Model A.—Even the classical FK model has a rich phase
diagram with metastable chaotic states [1], while introduc-
tion of the transverse degree of freedom leads to a more
complicated picture [8]. Namely, above a certain value
of the repulsion g� the minimal frequency Vmin

y of the
transverse phonon spectrum Vy�k� vanishes, and the triv-
ial ground state (linear chain with y � 0) bifurcates via
second-order transition into the zigzag ground state (two
subchains with y � 6Dy). For the exponential repulsion
at u0 � 1 the critical g� is determined from the condition

FIG. 1. The fuse scenario in the FK chain with the transverse
degree of freedom. (a) The kink velocity yk versus the force
F. Curves show the average values, while symbols are for
the raw data from the simulation (100 points taken during the
time 200p for each value of F). Small dots and solid curves
are for h � 0.1, bold dots and dashed curves are for h � 0.2.
The label (1) near the curves denotes the u � 64�56 case, and
(2) denotes the u � 64�60 case. (b) The same as in (a) for the
maximum y displacement of the atoms ymax.
[8] v2
y � 24V 0

i �a��a. Thus, for our choice of parameters
the commensurate structure is trivial if g , g� � v2

y�2,
otherwise it is zigzag-like. At g , g� the frequency Vmin

y

is given by [8] Vmin
y � Vy�p� � �v2

y 2 2g�1�2. Since
local repulsive forces in the kink core exceed those in the
commensurate structure, the bifurcation takes place locally
at a smaller g. Thus, there exists some gk , g�, such that
at g , gk all the system is in the trivial state, while at
gk , g , g� the chain is still linear far from the kink, but
the atoms in the kink core escape out of the y � 0 line.
One can roughly estimate gk for a very discrete chain [9],
although the actual picture is more complex. For discrete
enough chains (g , 0.5), when the kink core consists of
two atoms, we found the existence of only one type of
the y-distorted kink at g , g�, called the rhomboid kink
(RK), which is shown along with the trivial kink (TK) in
the insets in Fig. 3a. RK corresponds to a configuration
of two atoms placed in one well with the same x and op-
posite y � 6yRK [11]. The transition from the TK to RK
(e.g., when g is changed) is of the first order and exhibits
hysteresis. We plot the energy difference between RK and
TK, DE, versus g at a fixed vy , and determine gk from
the condition DE � 0. An example in Fig. 3b (vy � 1.3,
so that g� � 0.845) gives gk � 0.340 6 0.002, while the
estimation [9] is �0.345. Let us emphasize that both RK
and TK correspond to local minima of the energy, one of
them being stable and another metastable state, separated
by nonzero barrier e along the quasiadiabatic trajectory in
the energy landscape (Fig. 3a). At g , gk the barrier e

between the saddle-point configuration �0.2a, 0.21a� and
RK is shown in Fig. 3b.

To achieve the fuse scenario, let us chose, e.g., vy � 1.3
and g � 0.31 & gk , so that TK is the ground state, while
RK is a close metastable state (with DE � 0.176 and e �
0.035). We start from the initial configuration with TK’s.
They begin to slide at a small force FTK � 0.03 (Fig. 1a)

FIG. 2. The fuse scenario for the 2D isotropic FK model. The
notation is the same as in Fig. 1. Here we define ymax as
the maximum deviation of the y coordinate of an atom from
the nearest line y � 2pn, n being an integer.
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FIG. 3. Trivial and rhomboid kinks in the FK chain with the
transverse degree of freedom. (a) The contour plot of the total
energy of the system in the �x, y� plane (the interval between
levels is 0.01). The energy was measured with one of the atoms
in the kink core given a shift �x, y� from the bottom of the well
and kept fixed, and the rest of the chain relaxed (see details in
[10]). After releasing of all atoms and one more relaxation, we
find also the regions of attraction for RK and TK (separated by
the bold curve). Insets: The sketches of TK and RK (black
circles denote the kink core). (b) The energy difference DE �
ERK 2 ETK and the barrier e � Esaddle 2 ERK as functions of
g. Both (a) and (b) are for vy � 1.3.

needed to overcome the Peierls-Nabarro (PN) barrier ´pn

[equal to the energy difference between the points �0.5a, 0�
and �0.31a, 0� in Fig. 3a]. By contrast, having chosen
the RK’s as the initial condition, one does not see any
dynamics in the system until a much larger force FRK �
0.37, when RK’s start to move. Note that the beginning of
the motion of RK is not related to the degradation of its PN
barrier (the barrier e in Fig. 3), because the path from the
equilibrium RK position to the saddle point configuration
(Fig. 3a) does not coincide with the x direction, while the
force is applied along x.

At the critical velocity yc � 2.1 (Fig. 1a) the behavior
of sliding TK’s changes qualitatively: the atoms in the
cores of kinks start to oscillate transversely, and the kinks
produce y-oscillating decaying tails. With further increase
of the force the kink velocities remain fixed at yc, while the
amplitude of y oscillations grows, and when its maximum
ymax reaches the equilibrium position for RK yRK � 0.27a
(see Fig. 1b), the system locks (�y� � 0) at a force Flock,
where Flock depends both on h and u. The typical locked
atomic configuration consists of rhomboid kinks bunched
in a compact group (a stopped kink acts as a trap for the
kinks behind it). This locked state persists in the range of
forces Flock , F , FRK, i.e., it is destroyed only when
RK’s start to slide, and the system goes to the totally
running state. The locked state with RK’s is metastable,
its energy (after the force is decreased back to F � 0) is
higher than that for the state with TK’s.

In the y-oscillating state just preceding the locking, one
can visually distinguish separate kinks, however the over-
all system dynamics is chaotic. The number of positive
Lyapunov exponents in this state is equal to the number of
5208
kinks Nk , and the Fourier spectra of both yx and yy are
continuous with high-frequency tails decaying via a power
law Sy�v� ~ v25 [12]. According to our observations, the
chaotization of the kink’s motion plays an important role
in the fuse scenario, allowing the system to reach eventu-
ally, due to chaotic y oscillations, the region of attraction
of the RK configuration (Fig. 3a). Indeed, when the kinks
dynamics is regular (e.g., at higher frictions h . 0.3) we
never find the fuse scenario, though the y oscillations may
emerge. Note that the force F � 0.1 4 0.3 (Fig. 1) is al-
ready large enough to gain (at a distance 
a�2) the energy
needed for the transition to the RK state, DE 1 e � 0.2
at g � 0.31.

Let us discuss the dependence of the locking threshold
Flock on h and u (Fig. 1a). First, the force Fc, when y
oscillations emerge at the critical velocity yc, increases
with h and is nearly independent on u. Indeed, we found
that the initial growth of yk with F follows the depen-
dence yk ~ F�h, so that Fc ~ hyc. Second, with fur-
ther increase of the force the condition ymax � yRK is
also achieved later at higher frictions (resulting in a larger
Flock) because of the smaller amplitude of the chaotic y os-
cillations (Fig. 1b). Thus, the friction must be low enough
to get ymax � yRK at Flock , FRK. Third, we observed
in separate simulations [12] that even for a single kink
in a long chain (u � 512�511) the internal y oscillations
become chaotic at low frictions (h , 0.04), and the fuse
scenario still exists. However, the presence of many kinks
(larger u) effectively enhances the probability of the tran-
sition to the RK state (i.e., it reduces Flock at a fixed h),
probably because of the fluctuations of interkink distances
(when two kinks come close enough to each other, they lo-
cally reduce the energetic barrier needed for the transition
to RK).

As the transverse instability of the TK’s motion is the
main reason for the fuse behavior, let us dwell on it in
some more detail. Provided that RK coexists with TK at
given g and vy this instability can lead to a fuse scenario,
but in fact it is observed in a much wider region of the
system parameters. At lower frictions the instability results
in the chaotic y oscillations, while at higher frictions we
can see the regular antiphase y oscillations in the core
of running kink, with kink’s velocity in both cases fixed
at a value yc (independent on h and u) when the force
increases. This indicates that the y instability should have
a resonant origin. Furthermore, at larger frictions, when
the atomic motion is regular, we found that the propagation
of the kink for one lattice constant a corresponds to 1�4
of the period of the local y oscillation of atoms in the kink
core, which means that yc � 4Veff, where Veff , Vmin

y
is a local y frequency of the antiphase oscillations of the
atoms inside the kink. Although we did not determine Veff
analytically, we found, varying vy and g, that yc is well
fitted (both for the regular and irregular y oscillations) with
the resonancelike formula yc � 4��Vmin

y �2 2 C�1�2 with
the constant C � 0.81.
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Model B.—We placed 225 atoms into the square area of
15 3 15 unit cells, so that u0 � 1. If the interatomic re-
pulsion is not too strong, the atoms are arranged at the bot-
toms of the wells in the simple p�1 3 1� structure. Now
let us add one extra atom in every x row thus obtaining
u � 16�15, i.e., one kink in each x row (we denote these
kinks as the “$” kink). However, this system allows also
another kink orientation (along y, denoted as the “l” kink),
and these two configurations are separated by a nonzero
energetic barrier. If we apply a force along x, the “$”
kinks start to move (nearly linear growth of yk with F),
but then, at a critical velocity yc2 � 2.4, there occurs a
sharp increase of the transverse y oscillations of the atoms
in kinks’ cores, and the system eventually locks in the state
with the “l” kinks, thus demonstrating the fuse scenario
(Fig. 2, the plots of yk � 16�y� versus F for g � 0.31
are shown). Note that yk does not fall sharply as in Fig. 1,
but shows instead some gradual decrease. This is related
to the decrease of the total number of running kinks, be-
cause the transition to the “l” kinks does not take place in
all rows simultaneously. However, the velocity of the run-
ning “$” kinks is fixed at yc2.

The notable difference from the model A (which re-
quired some fine tuning of g or vy in order to put the
system in the region of RK and TK coexistence) is that
in the model B the fuse scenario is more generic, we ob-
serve it in a wide range of system parameters (g , 1.0,
h , 0.3). The fuse scenario also takes place in the model
B if the initial configuration consists of a mixture of the
“l” and “$” kinks; when a small spatial anisotropy is in-
troduced (vy . vx), so that the “$” kink is stable and
the “l” kink is metastable; and we observed it as well in a
2D system with the triangular symmetry [12].

In summary, we have found that the underdamped sys-
tem of interacting atoms placed in an external periodic po-
tential with more than one spatial degree of freedom may
exhibit the “fuse” scenario of the dynamical phase transi-
tion in response to the dc force. Namely, after an interme-
diate regime of running kinks with nonzero conductivity,
the system can then be trapped in an immobile state. The
mechanism of this trapping lies in random transverse oscil-
lations of the atoms in the cores of kinks. When the force
grows, the amplitude of these oscillations sharply increases
after the kinks reach certain critical velocity, and finally the
mobile state is transformed into an immobile one with the
kinks oriented transversely to the applied force.

Although the fuse scenario assumes a special choice
of system’s parameters, they are quite typical for such
physical systems as, e.g., atoms adsorbed on metal sur-
faces. The comparatively simple atomic systems with
the behavior similar to the “fuse safety device” could be of
great interest for the development of various atomic-scale
devices. Besides, this scenario can be found in other
nonlinear models, e.g., it has been recently reported
for the system of two coupled solid state lasers [13].
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