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In a recent MIT experiment, a new form of superradiant Rayleigh scattering was observed in Bose-
Einstein condensates. We present a detailed theory of this phenomenon in which condensate depletion
leads to mode competition, which, together with the directional dependence of the scattering rate, is
ultimately responsible for the observed phenomena. The nonlinear response of the system is shown
to be highly sensitive to initial quantum fluctuations which cause large run to run variations in the
observed superradiant pulses.

PACS numbers: 03.75.Fi, 42.50.Fx
With the recent advent of Bose-Einstein condensation
(BEC) in low-density alkali vapors [1,2], a laserlike
source of coherent monochromatic atomic matter waves
is now readily available. As the electromagnetic vacuum
itself provides a nonlinear medium for atomic fields, an
atomic BEC is thus an ideal system to study nonlinear
wave mixing and related phenomena. Indeed, nonlinear
atom optics [3–5] is now an experimental reality with
the recent observation of atomic four-wave mixing in
condensate systems [6,7]. In addition to wave mixing
between atomic matter waves, the ability to generate
laserlike atomic fields also raises the possibility to observe
direct wave mixing between atomic and optical fields.

In the case where the atoms interact only with far off-
resonant optical fields, the dominant atom-photon interac-
tion is two-photon Rayleigh scattering. When the atoms
are described as matter waves, Rayleigh scattering is for-
mally equivalent to a cubic nonlinearity, and therefore
leads to four-wave mixing between atomic and optical
fields. In recent work [8–10] along these lines, the scat-
tering of light by a condensate from a strong pump laser
into a weak quantized optical cavity mode was considered.
This work was an extension of the collective atomic recoil
laser (CARL) [11,12] into the regime of BEC, and focused
on exploiting an instability in the light-matter interaction
to parametrically amplify atomic and optical waves as well
as to optically manipulate matter-wave coherence proper-
ties and generate entanglement between atomic and optical
fields.

Recent experiments by Ketterle and co-workers at MIT
[13], however, have demonstrated that this instability can
play an important role also in the case in which laser light
is scattered into the vacuum modes of the electromagnetic
field. In these experiments, a variation of Dicke superra-
diance [14] was observed in which the role of electronic
coherence, which stores the memory of previous scatter-
ing events, is replaced by coherence between center-of-
mass momentum states, i.e., interference fringes in the
atomic density. In this paper we present a multimode
theory of condensate superradiance. Beginning with the
elimination of the radiated light field as in the Wigner-
Weiskopf theory of spontaneous emission, we derive a
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linearized model which describes amplification of quan-
tum fluctuations. This is then coupled to a “classical”
nonlinear model in which mode competition quenches
scattering in all but the direction(s) of maximum gain.
The initial quantum fluctuations are shown to strongly
influence superradiant pulse formation, and lead to large
fluctuations between runs with identical experimental pa-
rameters. In the MIT experiments this is clearly demon-
strated by the presence of random spots in the angular
distribution of the scattered photons.

Our model consists of a Schrödinger field of two-
level atoms coupled via the electric-dipole interaction to
a far-off resonant pump laser field, as well as to the
vacuum modes of the electromagnetic field. The pump
laser has frequency v0, wave vector k0 � �v0�c�ŷ , and
its polarization is taken along the x̂ axis. Because of
the large detuning between the pump frequency and the
atomic transition frequency va, we can eliminate the
excited state field, and describe the atoms as a scalar
field of ground state atoms. This atomic field is self-
interacting, due to ground-ground collisions, however,
we note that collisions which transfer populations are
generally nonresonant and should make only a small
contribution to the dynamics. The remaining collisions
then simply give a mean field shift to the resonance
frequency for quasiparticle excitations. As the effect of
these shifts on our model are negligible, at present we
include collisions only implicitly in the determination of
the condensate wave function.

The effective Hamiltonian which describes the coupling
of the atomic and electromagnetic fields is given by

Ĥ �
Z

d3r Ĉy�r�H0�r�Ĉ�r� 1
Z

d3k h̄v�k�b̂y�k�b̂�k�

1
Z

d3k d3r�h̄g�k�Ĉy�r�b̂y�k�ei�k02k�?rĈ�r�

1 H.c.� , (1)

where Ĉ�r� is the atomic field operator, and b̂�k� is the
annihilation operator for a photon in mode k in the frame
rotating at the pump frequency v0. The photon energy in
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this frame is given by v�k� � cjkj 2 v0. The single-
atom Hamiltonian is given by H0�r� � 2�h̄2�2m�=2 1

V �r� 1 h̄jV0j
2�2D, with V �r� being the trap potential, V0

the pump Rabi frequency, and D � v0 2 va the pump
detuning. The Hamiltonian (1) includes only scattering
of pump photons, i.e., multiple scatterings between vac-
uum modes are neglected. The coupling coefficient for
Rayleigh scattering between the pump and vacuum modes
is

g�k� �
jV0j

2jDj

s
cjkjd2

2h̄e0�2p�3 jk̂ 3 x̂j , (2)

where d is the magnitude of the atomic dipole moment for
the transition involved.

The atomic field is initially taken to be a number state
in which N atoms occupy the trap ground state w0�r�,
which satisfies �H0�r� 2 h̄m�w0�r� � 0, with m being the
energy of the trap ground state. The effect of atomic
recoil during Rayleigh scattering between the pump and
the vacuum mode k is therefore to transfer atoms into the
state w0�r� exp�i�k0 2 k� ? r�. This suggests to expand
the atomic field operator onto quasimodes according to

Ĉ�r, t� �
X
q

�rjq�e2i�vq1m�t ĉq�t� , (3)

where �r jq� � w0�r� exp�iq ? r�, and vq � h̄jqj2�2m.
This is similar to the slowly varying envelope approxima-
tion from optical physics, the envelope being given here
by w0�r�.

A discrete quantization of the q values follows from the
requirement that the operators �ĉq	 obey boson commuta-
tion relations �ĉq, ĉ

y
q0� � �q jq0� 
 dq,q0. Because of the

finite size of the ground state wave function w0�r�, this
means that q and q0 must be separated in k space. Hence,
the summation in Eq. (3) is taken to include the condensate
mode q � 0 as well as a grid of q values as closely spaced
as is consistent with orthogonality. Clearly, this expan-
sion is not rigorously orthogonal and complete, however,
it is sufficient to account for the quantum statistical effects
which occur above the critical phase-space density.

An important aspect of BEC superradiance is the gen-
eration of families of higher-order side modes due to the
scattering of pump photons by the first-order side modes.
For the scope of this paper, however, we consider a simpli-
fied model containing only the primary Rayleigh scattering
process whereby a condensate atom is transferred to a first-
order side mode by scattering a pump photon. With this
simplification, we insert the expansion (3) into Eq. (1) and
arrive at the effective Hamiltonian

Ĥ �
Z

d3k h̄v�k�b̂y�k�b̂�k�

1
X
qfi0

Z
d3k �h̄g�k�rq�k�eivqt ĉy

q b̂y�k�ĉ0 1 H.c.� ,

(4)
where rq�k� �
R

d3rjw0�r�j2 exp�2i�k 2 k0 1 q� ? r�
is the Fourier transform of the ground state density
distribution centered at k � k0 2 q.

From the Hamiltonian (4) it is straightforward to derive
the equation of motion for b̂�k�, which upon formal
integration yields

b̂�k, t� � b̂�k, 0�e2iv�k�t 2 i
X
qfi0

g�k�rq�k�eivqt

3
Z t

0
dt e2i�v�k�1vq�t ĉy

q �t 2 t�ĉ0�t 2 t� ,

(5)

where the first term gives the free electromagnetic field,
i.e., vacuum fluctuations, and the second term is the
radiation field due to Rayleigh scattering. A nonzero
expectation value of the coherence operator ĉy

q ĉ0 indicates
the presence of interference fringes, hence the radiated
field increases as fringes build up. This term therefore
leads to an instability where the memory of previous
scattering events, stored in the matter-wave interference
fringes, enhances the present rate of Rayleigh scattering.

Equation (5) is then substituted into the equation of
motion for ĉq. In the Markov approximation this yields

d
dt

ĉq � 2 i
Z

d3kg�k�rq�k�b̂y�k, 0�ei�v�k�1vq�t ĉ0

1
Gq

2
ĉ
y
0 ĉ0ĉq, (6)

where

Gq � 2p
Z

d3kjg�k�j2jrq�k�j2d�v�k� 1 vq� (7)

is the single-atom gain. In deriving Eq. (6) we have
used the approximation r�

q�k�rq0�k� 
 jrq�k�j2dq,q0 , and
neglected the principal part which accompanies the d

function.
For a closed atomic system, the total number of atoms is

conserved, hence ĉ
y
0 ĉ0 � N 2

P
qfi0 ĉy

q ĉq. For very short

times we can therefore take ĉ
y
0 ĉ0 
 N . In this case Eq. (6)

reduces to

d
dt

ĉq �
Gq

2
Nĉq 1 f̂y

q �t� . (8)

where f̂q�t� is a noise operator whose correlation functions
are given in the Markoff approximation by

� f̂y
q �t�f̂q�t0�� � 0 ,

� f̂q�t�yq�t0�� � GqNd�t 2 t0� .
(9)

These noise operators allow the system to be triggered by
quantum fluctuations, and hence describe “spontaneous”
scattering which occurs in the absence of any side mode
population.
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Equation (8) can be solved exactly, giving

ĉq�t� � e�Gq�2�Ntĉq�0� 1
Z t

0
dt e�Gq�2�Nt f̂y

q �t 2 t� .

(10)

From Eq. (10) it is possible to compute the probability
Pq�n, t� of having n atoms in mode q at time t, assuming
zero population at t � 0. To accomplish this we first
compute the antinormally ordered characteristic function,
xq�h� � �exp�2h�ĉq� exp�hĉy

q ��, yielding

xq�h� � e2jhj2�n̄q�t�11�, (11)

where n̄q�t� � exp�GqNt� 2 1 is the mean population
of mode q at time t. We can identify expression (11)
as corresponding to a chaotic field [15]. The number
distribution for a chaotic field is given by

Pq�n, t� �
1

n̄q�t�

µ
1 1

1
n̄q�t�

∂2�n11�
, (12)

which for n̄q�t� ¿ 1 is well approximated by
exp�2n�n̄q�t���n̄q�t�.

When the mean population of a field mode is suffi-
ciently large, correlation functions effectively factorize to
all orders, and it becomes possible to formulate a classical
description of the field dynamics. In the classical theory,
we can consider the side mode populations as c numbers
and neglect the influence of the quantum noise operators.
With the inclusion of condensate depletion, the side mode
populations then obey the coupled equations

d
dt

nq � Gq

√
N 2

X
q0fi0

nq0

!
nq . (13)

Momentum conservation tells us that for each atom
scattered into the side mode q, there is a photon scattered
roughly in the direction k � k0 2 q. Hence, N 3

dIq�dt is the ideal photon count rate generated by the
j0� ! jq� atomic center-of-mass transition.

The classical nonlinear model is applicable when
n̄q�t� ¿ 1, whereas the linearized quantum theory re-
quires

P
qfi0 n̄q�t� ø N . We therefore join them by

choosing initial conditions for Eq. (13) from Pq�n, tcl�,
where tcl satisfies 1 ø n̄q�tcl� ø N . Because the re-
sponse is still linear at time tcl the resulting nonlinear
evolution does not depend on the particular choice of tcl.

We now analyze the geometrical dependence of the
single-atom gain given by Eq. (7), and show that it is
largest for radiation along the long axis of the condensate.
We note that Gq depends on g�k�, which contains the
dipole radiation pattern, as well as on rq�k�, which
depends on the geometry of the condensate. For a cigar-
shaped condensate aligned along the ẑ axis, rq�k� is a
disk which lies parallel to the x̂-ŷ plane in k space.
The dimensions of the disk in k space are roughly the
inverse of the condensate dimensions in r space. Thus
for a condensate whose dimensions are large compared to
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an optical wavelength, the dimensions of rq�k� are small
compared to k0.

Since g�k� is slowly varying compared to rq�k�, it can
be removed from the integral in Eq. (7), and evaluated
at the center of rq�k�. In addition we neglect the recoil
shift vq in the d function as it has negligible effect. The
remaining integral then defines the solid angle Vq for the
scattered radiation associated with the qth mode according
to

Vq �
1

k2
0

Z
d3kjrq�k�j2d�jkj 2 k0� , (14)

which shows that only q values for which the center of
rq�k� lies at a distance k0 from the origin experience gain,
a consequence of energy conservation. Thus for every
active quasimode q there is a radiation direction k̂ such
that q � k0� ŷ 2 k̂�.

We can estimate for Vq by taking jrq�k�j2 to be
an ellipsoid solid with the inverse dimensions of the
condensate. This gives

Vq �
4p

k2
0W2

�cos2uk̂,ẑ 1 �L�W �2 sin2uk̂,ẑ�21�2, (15)

where L is the length of the condensate along the ẑ axis,
W is the radial diameter, and uk̂,ẑ is the angle between the
radiation direction and the long axis of the condensate.
Thus Vq is maximized for uk̂,ẑ � 0, p , corresponding to
radiation along ẑ and 2ẑ, where it is given by Vq �
4p�k2

0W2. As uk̂,ẑ moves away from the ẑ axis, Vq is
relatively flat until it reaches the geometric angle W�L,
after which it drops off rapidly. It is important to note
that for the isotropic case L � W there is no preferred
direction, and a ring of radiation is instead observed.

Taking into account all of these considerations, the
expression for the single-atom gain becomes

Gq � G
sin2uk̂,x̂q

cos2uk̂,ẑ 1 �L�W�2 sin2uk̂,ẑ

, (16)

where G � 3jV0j
2G�8jDj2k2

0W2 is the maximum single-
atom gain, G � k3

0d2�3p h̄e0 being the single-atom spon-
taneous decay rate, and uk̂,x̂ is the angle between the
radiation and polarization directions. For the parameters
of the MIT experiment we find G � 4 3 1024 ? I , where
I is the laser intensity in mW�cm2, and G is given in
Hz. A rough estimate of the duration of a superradi-
ant pulse for the case N � 106 and I � 100 mW�cm2

is t � ln�N��GN � 150 ms, in excellent agreement with
experimentally observed time scales.

The interplay between the dependence of Gq on the ra-
diation direction and the nonlinearity in Eq. (13) leads to
mode competition, the outcome of which depends sensi-
tively on the initial quantum fluctuations. When modes
with different values of Gq compete, the competition is
“unfair” and the mode with the largest Gq generally de-
pletes all of the condensate atoms before the populations
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of the other modes build up. Modes with the same Gq,
such as the quasimodes corresponding to radiation along
the ẑ and 2ẑ directions, instead compete “fairly,” with re-
sults which depend sensitively on the random initial con-
ditions. We note that there is no “winner-takes-all” effect
and multiple modes can “fire” simultaneously.

The angular dependence of the scattered light from a
typical simulation is shown in Fig. 1, where we have
plotted the photon count density as recorded by an ideal
detector array located at a distance Z from the center
of the condensate along the ẑ axis. The dark regions
correspond to maximum light intensity, while the white
regions indicate negligible intensity. The center of the
figure lies along the symmetry axis of the BEC, and
the half-width of the box, given by ZW�L, corresponds
to the geometric radiation angle. The simulation was
performed for a condensate with N � 106 atoms in a
BEC with a width of 10 mm and a length of 100 mm,
in rough agreement with the MIT experiment. From the
figure, we see typical results of the interplay between
quantum fluctuations and mode competition. The pattern
of dark spots indicates multimode superradiance, and
exhibits variation on the scale of Z�k0W , corresponding
to the solid angle of radiation for an endfire mode. The
pattern, which arises from the amplification of quantum
fluctuations, varies randomly from run to run, an effect
which has been directly observed experimentally.

In conclusion, we note that the quasimode populations
will experience losses as the recoiling atoms eventually

FIG. 1. A typical numerical simulation of condensate super-
radiance. The scattered photon intensity is plotted as seen by
a detector array located at a distance Z along the symmetry
axis of the cigar-shaped BEC. The black regions correspond to
maximum and the white regions to negligible intensity, respec-
tively. The width of the figure is twice the geometric angle of
the condensate.
propagate out of the condensate volume. The lifetime
of the quasimode, however, is on the order of Tq �
mLq�h̄jqj, where Lq is the length of the condensate along
q. These losses tend to destroy the coherence between
the condensate and the quasimode, which accounts for the
observation of a threshold for superradiance in the MIT
experiment: for insufficient laser power, the growth of
matter-wave coherence cannot overcome the losses. As
this threshold is very small, we have simply neglected
it here.

In general, the rate of matter-wave decoherence in
superradiance or CARL-type experiments is given by the
ratio between the recoil velocity and the matter-wave
coherence length. As the coherence length of a BEC is
significantly larger than that of a noncondensed atomic
cloud, the threshold for superradiance above Tc is much
larger than below Tc, which explains why superradiance
was never observed above Tc in the MIT experiment. We
remark that in the case of the CARL, the presence of
an optical cavity provides additional feedback, which can
compensate for the lack of atomic coherence.

Lastly, we remark that the Hamiltonian (1) describes
the creation of correlated atom-photon pairs, and is there-
fore analogous to the optical parametric amplifier, which
generates entangled two-photon states for a variety of ap-
plications, e.g., tests of Bells inequality, quantum cryp-
tography, and quantum teleportation. It should therefore
be possible to perform analogous experiments using en-
tangled atom-photon states generated in a BEC superradi-
ance experiment.
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