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Exact Wave Functions for the Coulomb Problem from Classical Orbits
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We present a simple formula that expresses energy eigenfunctions for the Coulomb problem exactly
and entirely in terms of the corresponding classical orbits. Since both energy eigenvalues and eigenfunc-
tions can be obtained exactly by a semiclassical procedure, the full quantum dynamics of the electron in
a Coulomb field can be expressed completely in terms of its classical motion.

PACS numbers: 03.65.Sq, 03.65.Ge, 31.15.Gy
The relationship between the classical orbits and the ob-
served behavior of the hydrogen atom was a central issue
in the old quantum theory [1] and has remained a sub-
ject of fascination for nearly a century. Modern interest
in this topic [2–4] can, in part, be attributed to the con-
tinuing desire to attain a more thorough understanding of
the quantum-classical correspondence and develop new,
accurate, semiclassical approximations. However, much
of the attention that has been focused on the classical as-
pects of the Coulombic problem in the past few years can
be traced to the recent observation of wave packet recur-
rences in high-n Rydberg atoms [5] that strongly suggest
motion of the electron in classical Kepler orbits. These
experiments have stimulated several theoretical attempts to
identify Coulombic coherent states that evolve in a manner
most closely resembling the classical dynamics [4].

In this paper, we show that a special and very deep rela-
tionship exists between the classical and the quantum be-
havior of an electron in a Coulomb field. In particular,
we demonstrate that the energy eigenfunctions for such a
system can be expressed exactly and entirely in terms of
the corresponding classical electron motion. As a conse-
quence, the quantum dynamical evolution of the electron in
a Coulomb field can, in principle, be completely described
by classical mechanics.

The above property is similar to one that has been known
for some time to apply to the case of the harmonic oscil-
lator (HO) [6]. To proceed, it will be useful to review
the exact classical expression for HO wave functions in a
generalized context. We thus consider a multidimensional
system with f degrees of freedom. An (generally approxi-
mate) expression for the wave function describing a state
with quantum numbers n � �n1, . . . , nf� is given by [7]

Cn�q0� � N
Z

ceif� h̄eiw� h̄ da , (1)

where the integral is taken over the f-dimensional
Lagrangian manifold associated with quantized actions
J � �n 1 d�4�h̄, the di being the Maslov indices. This
manifold is parametrized by the angle variables a conju-
gate to the J. In the above expression,

f � pT �q0 2 q� 1 i�q0 2 q�TG�q0 2 q� , (2)
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where qi�a� and pi�a� are the Cartesian coordinates and
conjugate momentum variables on the Lagrangian mani-
fold, G�a� is an f 3 f complex symmetric matrix, peri-
odic in the angle variables, and having a positive definite
real part, and

w �
Z q

pT dq (3)

is Hamilton’s characteristic function (the time-independent
action integral). The lower limit of the integral in Eq. (3)
is arbitrary since it only affects the overall phase of the
wave function. The preexponential factor c in Eq. (1) is
given by

c � �det�P 2 2iGQ��1�2, (4)

where

�P�ij �
≠pi

≠aj
, �Q�ij �

≠qi

≠aj
, i, j � 1, . . . , f ,

(5)

are stability matrix elements. Finally, N is a normaliza-
tion constant.

For the particular case of a HO with potential V �q� �Pf
i�1�miv

2
i q2

i ��2, Eq. (1) becomes an exact expression
for the wave function provided that G is chosen to be
diagonal with elements Gii � mivi�2 [6]. Although
Eq. (1) does not remain exact for more general systems,
a stationary phase treatment shows that this expression
(with arbitrary admissible G) nevertheless reduces to the
Wentzel-Kramers-Brillouin (WKB) formula for the wave
function in the classical limit. Equation (1) is, thus, a
semiclassical asymptotic formula. Additionally, it can
be shown that Eq. (1) is actually superior to the WKB
formula as a semiclassical approximation since it provides
a globally uniform semiclassical treatment for states that
occupy regular regions of phase space [7]. From this
perspective, Eq. (1) is a uniform semiclassical expression
that becomes exact for the special case of the HO.

Equation (1) has an appealing physical interpretation. A
Gaussian coherent state function exp�if�h̄� is centered on
the classical particle as it travels along each trajectory that
semiclassically corresponds to the quantum state n of in-
terest. Each such function is weighted by the preexponen-
tial factor c and multiplied by the ubiquitous semiclassical
© 1999 The American Physical Society
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phase factor exp�iw�h̄�. The resulting functions then add
together coherently at each point q0 to form the wave func-
tion for the system.

We now present an expression analogous to Eq. (1) that
describes the energy eigenstates for the Coulomb problem.
Focusing on the bound states of the hydrogen atom for
specificity, the wave functions are given by

Cnlm�r0� � N
Z

CeiF� h̄eiW� h̄ da , (6)

where the integral is over the three-dimensional La-
grangian manifold associated with the quantized values of
the action variables for the desired state:

N � nh̄, L � �l 1 1�2�h̄, M � mh̄ . (7)

This manifold is parametrized by the angle variables a �
�aN , aL, aM�, conjugate to �N , L, M�, which take on val-
ues in the range �0, 2p�. Other quantities appearing in
Eq. (6) are

F � p ? �r0 2 r� 1 �prr 1 iL� �r 0r 2 r0 ? r��r2,
(8)

where �r 0, u0, w0� and �r , u, w� are, respectively, the
spherical components of r0 and r�a�, and �pr , pu , pw�
are the spherical components of the momentum p�a�
conjugate to r. In addition,

W �
Z r

pr dr 1
Z u

pu du 1
Z w

pw dw (9)

is Hamilton’s characteristic function; the preexponential
factor is given by C � CrCu , where

C2
r � �L�r2 1 i�≠pr�≠r�aL,aM �pr�r2, (10)

C2
u � L cosu 2 ipu sinu , (11)

and N is again a normalization constant.
Equation (6) is perhaps most easily verified by explicitly

evaluating the integrals over a. Here we sketch only the
steps involved. Further details will be presented elsewhere.

The angular components of r and p and the function W
must be expressed in terms of the variables aL, aM , L, and
M. The necessary transformations can be found in many
references [1,8]. This yields

Cnlm�r0� � N 0
Z

da CreiFr � h̄eiWr � h̄

3 e�r 0�r�Ge2i�aL1c�
eil�aL1c�1imaM , (12)

where

Fr � pr �r 0 2 r� 1 iLr 0�r , (13)

Wr �
Z r

pr dr , (14)
G �
p

L2 2 M2 cosu0 1 i�L sin�aM 2 w0�
1 iM cos�aM 2 w0�� sinu0,

(15)

c �
Z r

�≠pr�≠L� dr , (16)

and N 0 is a constant. It is most convenient to perform
the integration over aL in Eq. (12) first. Expanding the
exponential factor involving G in Eq. (12) in a power
series and changing the integration variable to aL 1 c

immediately gives

Cnlm�r0� � N 0R�r 0�
2p

l! h̄l eimw0
Z 2p

0
Gleim�aM2w0� daM ,

(17)

where

R�r 0� �
Z 2p

0
Cr �r 0�r�leiFr � h̄eiWr � h̄ daN . (18)

Changing the integration variable in Eq. (17) to t �
aM 2 w0 and expanding Gl in powers of exp�it� yields
a finite power series in the variable �tanu02� that, apart
from a constant factor, can be recognized as a stan-
dard expression for the associated Legendre function
Pm

l �cosu0� [9].
The remaining factor R�r 0� can now be evaluated by

expressing r , pr , and Wr in terms of action N and the
variable u, defined by the condition aN � u 2 e sinu,
where e � �1 2 L2�N2�1�2. By changing the integration
variable to

z � 2

µ
2r 0

na0

∂
e2iu

e2iu 2 y
, (19)

where a0 is the Bohr radius and y � ��N 1 L���N 2

L��1�2, and comparing the resulting integral to a known
representation of the Laguerre function [10], R�r 0� is
shown to be equal to the exact (but unnormalized) radial
factor of the hydrogenic atom.

The net result is that Eqs. (6) and (18), respectively, ex-
press the three-dimensional wave function and the radial
factor for bound states of the hydrogen atom exactly in
terms of the classical motion of the electron. Actually,
these expressions continue to be valid for unbound (con-
tinuum, positive energy) states of the atom and for the re-
pulsive Coulomb interaction (Rutherford scattering). In
such cases, the radial motion is not quantized, aN is re-
placed by a timelike variable with infinite limits, and it
can be shown that R�r 0� can be expressed in terms of the
appropriate Coulomb wave function.

The similarity of Eqs. (6) and (18) to Eq. (1) suggests
that the present functions exp�iF�h̄� and exp�iFr�h̄�
should be interpreted as generalizations of the Gaussian
coherent state functions exp�if�h̄� appearing in the first
treatment. Analogously, the present functions can be
viewed as traveling with the electron along its classi-
cal trajectories and coherently adding together to build
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the wave function. The deviations of exp�iF�h̄� and
exp�iFr�h̄� from the Gaussian form are evidently
necessary to ensure that the new expressions correctly
incorporate the effect of the Coulomb singularity and
properly treat the boundary condition for R�r 0� at r 0 � 0,
so that they yield the desired, exact results for the
Coulomb problem.

An additional relationship between our Coulomb
expressions and Eq. (1) can be seen if F and Fr are
expanded to second order in �r0 2 r� and �r 0 2 r�, re-
spectively. It can then be shown that Cnlm�r0� and R�r 0�
take on the precise form given by Eq. (1) for the cases
f � 3 (and nondiagonal G) and f � 1, respectively.
This result immediately allows us to apply a stationary
phase treatment to show that the expressions in Eqs. (6)
and (18) approach WKB forms in the classical limit,
even for non-Coulombic potentials. Thus, in analogy to
the case of the HO, the new expressions are semiclassical
formulas that may be applied for a variety of potentials
but that have the special property of becoming exact only
for the Coulomb potential.

An even stronger relationship between the HO and
Coulombic wave functions is revealed by replacing
F with F 1 ig�r 0 2 r�2 and C2

r with C2
r 1 2g in

Eqs. (6) and (10), where g � �L 2 irpr ���2r2�. The
factor exp�iF�h̄� then becomes the Gaussian coherent
state function exp�ip ? �r0 2 r��h̄ 2 gjr0 2 rj2�h̄� and,
after a bit of work, the revised Eq. (6) can be shown
to be an exact expression for the wave function of the
three-dimensional isotropic HO in the state �n, l, m�.
The classical expressions for the wave functions of the
Coulombic system and the three-dimensional HO are,
thus, very similar. It is not yet clear whether this simi-
larity can be simply explained as a consequence of the
known relationship [11] between the wave functions for
the hydrogen atom and the four-dimensional HO.

The above remarks help explain the origins of our
classical expression for the Coulombic wave function.
Equation (6) was obtained from the classical wave func-
tion for the three-dimensional isotropic HO by removing
the quadratic term ig�r 0 2 r�2 from F and correcting
C accordingly. This step was guided by the expectation
that the classical wave functions for the two systems
should be similar (e.g., due to the known similarity of
the radial functions) but that expressions for hydrogenic
wave functions should not involve Gaussian factors in
r 0. The isotropic HO wave functions were, in turn, ob-
tained by casting Eq. (1) in terms of spherical variables.
Throughout, formation of the integrands was guided by
the requirement that they reduce to the form of Eq. (1)
when F is expanded to second order, thus ensuring the
proper classical limit for the wave functions.

The analogy between the HO and Coulombic cases leads
one to expect the function exp�iF�h̄� in Eq. (6) to conform
to one of the existing definitions [4] of a Coulombic co-
herent state. However, this does not appear to be the case.
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In fact, exp�iF�h̄� does not even obey the basic condi-
tion of quadratic integrability as a function of r0 that is
implicit in the current definitions. Nevertheless, it is in-
teresting that the corresponding factor �r 0�r�l exp�iFr�h̄�
appearing in the radial function R�r 0� is closely related to
Nieto’s minimum uncertainty coherent state [12] for the
radial Coulomb problem. The relationship of the present
treatment to existing forms of Coulombic coherent states
deserves further study.

To summarize, we have presented an exact and remark-
ably simple formula that expresses the energy eigenstates
of an electron in a Coulombic field in terms of the cor-
responding classical orbits. It has been previously estab-
lished that semiclassical treatments of this system are
capable of yielding exact bound state energy eigenvalues
[13], residues of the momentum space Green function
(sums of n2 products of bound energy eigenfunctions)
[14], and scattering amplitudes [15]. The present work
shows that an appropriate semiclassical treatment of this
system gives exact individual energy eigenfunctions as
well. The Coulomb problem thus joins the harmonic os-
cillator as a special system having wave functions that can
be completely described in terms of classical quantities.
Clearly, if a classical treatment can determine both the
eigenvalues and a complete set of eigenstates exactly, it
can also describe the system’s time dependence exactly.
Thus, the dynamics of the Coulomb system can be fully
described in terms of its ordinary, real, classical orbits.

It is not difficult to extract from the results presented
here exact classical expressions for the energy eigenstates
for the rigid rotor and the radial wave functions for the
isotropic HO. These, together with exact classical wave
functions for a number of other simple systems will be
presented elsewhere.
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