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Novel Length Scales in Nanotube Devices
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We calculate the properties ofp-n junctions,n-i junctions, and Schottky barriers made on a single
wall carbon nanotube. In contrast to planar bulk junctions, the depletion width for nanotubes va
exponentially with inverse doping. In addition, there is a very long-range (logarithmic) tail in the charge
distribution, extending over the entire tube. These effects can render traditional devices unwork
while opening new possibilities for device design. Our general conclusions should apply to a br
class of nanotube heterojunctions, and to other quasi-one-dimensional “molecular wire” devices.

PACS numbers: 85.30.Vw, 73.40.Lq, 73.40.Ns, 73.61.Wp
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The prospect of nanoscale electronic devices has exc
great interest, with proposals ranging from quantum-d
cellular automata [1] to molecular switches [2]. Carbo
nanotubes (NTs) hold particular promise—though on
a nanometer across, they have exceptional strength
stability, and they can be either metallic or semiconducti
[3]. Simple field-effect NT transistors have already be
demonstrated [4,5]. Perhaps the most exciting possibi
lies in devices fabricated on a single tube [6], which
principle permit extremely small size and high density.

Here we examine the simplest possible on-tube devi
the p-n junction, as well asn-i junctions and metal-NT
Schottky barriers. We find that NT devices differ dra
matically from classic planar devices. In particular, th
depletion length variesexponentially with inverse doping.
At low doping the depletion length grows to microns o
more, precluding a nanoscale device. At high doping, t
length scale becomes so small that the device is ess
tially short-circuited by tunneling [7]. There is at mos
a narrow window between these two regimes. Thus a
useful implementation would probably require new devi
designs, and we suggest a design for a NT rectifier.

In addition, charging is not confined to the depletio
region, but extends over the entire tube, decaying o
logarithmically with distance from the junction. Thus
charge-transfer doping takes on radically greater imp
tance in NT devices. This can pose serious problems,
it also provides new opportunities for device design.

The novel behavior here is largely due to the quasi-on
dimensional electrostatics and screening, and so sho
hold qualitatively for a broad range of NT devices
such as on-tube heterojunctions [6], and for quasi-on
dimensional “molecular wire” devices in general.

We treat a single-walled semiconducting NT of radiu
R and band gapEg surrounded by a dielectric. To form a
p-n junction, one half of the NT is uniformlyn doped,
while the other half has equal and oppositep doping.
This is equivalent (via an image-potential constructio
to a Schottky barrier formed by ann- or p-doped NT
contacting a planar metal electrode, with a Schott
barrier height equal to half the NT band gap. For then-i
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junction, half of the NT is uniformlyn doped while the
other half is undoped (“intrinsic”). Our general qualitative
conclusions also apply to asymmetricp-n junctions or
Schottky barriers.

Substitutional doping of NTs with B and N has been
predicted theoretically [8], and substitution of B has bee
observed in C60 molecules [9]. Doping by insertion of
alkali or halogen atoms inside the tube has also be
proposed [10], and similar doping might be possible b
binding appropriate atoms or molecules to the outside
the tube. It is not yet clear which is the most promisin
mechanism for doping, much less the precise donor a
acceptor levels. We therefore adopt a generic model f
the doping, where the extra charge is uniformly distribute
over the tube so it does not affect the band structure. Th
model appears to be well justified for the case of dopin
by the insertion of atoms inside the tube [10].

The (screened) charges per atom along the tube is the
sum of contributions from dopant ions and electrons. O
then-type side of the junction,

s�z� �
e
e

f 2
e
e

Z `

Ec�z�
D�E, z�F�E� dE 1 sscr , (1)

where f is the doping fraction (the number of dopants
per atom of the NT),e is the dielectric constant of the
surrounding material,D�E, z� is the local density of states
per atom,F�E� is the Fermi function, andEc�z� is the
local conduction-band edge. We can neglect the valenc
band contribution since the band gapEg ¿ kBT .

The screening chargesscr includes the dielectric po-
larization of the NT itself. In addition, Eq. (1) implicitly
assumes a space-filling dielectric, sosscr also contains
a term to cancel the contribution of dielectric materia
where there is actually a hole to accommodate the N
These two terms correspond to dielectric rods of simila
radius, but contributing charges of opposite sign. Thu
the two terms tend to cancel. Also, both become unim
portant at large length scales. We therefore neglectsscr

for simplicity.
The charge is calculated using the “universal” NT den

sity of states [11], rigidly shifted by the local electrostatic
© 1999 The American Physical Society
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potential V �z�:

D�E, z� �
a
p

3
p2RV0

m�X̀
m�2`

g�E, ´m 2 eV�z�� , (2)

where g�E, ´� � �1 2 ´2�E2�21�2 for jEj . ´, and zero
otherwise. Here ´m � j3m 2 1jaV0�2R, V0 is the p-band
tight-binding parameter, and a is the bond length. The
accuracy of this approximation is discussed below.

The charge on the tube induces an electrostatic potential

V �z� �
R

4p

Z
s�z0�G�z 2 z0� dz0, (3)

where G is the electrostatic kernel for a cylinder. We
obtain the band bending and charge distribution by self-
consistently solving Eq. (1) (and the corresponding equa-
tion for the p type or undoped side of the junction) and
Eq. (3). The computation is performed in Fourier space,
for a periodic array of junctions. The parameters used in
our calculations are those of typical semiconducting nano-
tubes at room temperature [12,13], embedded in SiO2:
R � 0.7 nm, Eg � 0.6 eV, V0 � 2.5 eV, and e � 3.9.

Figure 1 shows the “band bending” at a NT p-n
junction for doping fraction f � 5 3 1024 and f �
1023. The charge density is shown in Fig. 2. While the
band bending looks superficially similar to a classic planar
device, the profound differences are seen immediately in
the charge distribution. A planar bulk device has a region
of essentially complete charge depletion, with an abrupt
transition to an uncharged region [14]. In contrast, for
NTs the region of complete depletion joins smoothly onto
a tail, which decays extremely slowly. This tail is also
present (though less conspicuous) in the band bending.

Qualitatively, the numerically calculated charge density
has the form

s�z� �
Ω

s0, z , W ,
s0 ln�W�l�� ln�z�l�, z . W , (4)

where s0 � ef�e, and l is a constant of order R
independent of doping. This is shown explicitly in the
inset of Fig. 2. Thus there are two distinct length scales
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FIG. 1. Band diagram of nanotube p-n junction for doping
f � 5 3 1024 and 1023. Solid lines are local valence and
conduction band edges. Dotted line is the Fermi level.
that characterize the behavior: the width W of the region
of full depletion, and the logarithmic-decay length l � R
of the charge tail. Outside the region of full depletion, the
charge decays extremely slowly—as 1� ln�z�l�.

In a planar bulk junction, the charge in the depletion
region creates a dipole sheet. The potential outside the
sheet is constant, so there is no further band bending or
charging outside this depletion region. For the NT p-n
junction, the dipole sheet is replaced by a dipole ring. If
charging were restricted to a finite depletion region, the
potential would fall off as z22 at large distances, which
is inconsistent with having no charge at large distances.
In fact, the potential must approach a constant value (the
“bulk” charge-neutral value) at large distances, and it is
this condition (in combination with the kernel G) which
determines the asymptotic form of the charge.

The depletion width W is plotted as a function of
doping in Fig. 3. Because s�z� is rounded by finite-
temperature effects, there is some uncertainty in extracting
W from our room-temperature numerical results. Two
different criteria for W are used in Fig. 3: (1) the distance
from the junction where the charge drops to 95% of s0,
and (2) the distance from the junction where the potential
comes within 2kBT of the band edge or the asymptotic
Fermi level. These give similar behavior.

For planar junctions, W � f21�2. The behavior of
nanotubes is radically different, as seen in Fig. 3. For low
doping we find that W depends exponentially on 1�f, and
can grow to microns or more. Moreover, in this case the
charge tail decays extremely slowly. The charge drops by
a factor of 2 at a distance z � W2�l, so this characteristic
length for decay of the charge tail grows much faster even
than W .

The exponential dependence of W on inverse doping
can be rationalized by neglecting the charge outside of W .

FIG. 2. Charge per C atom on the n-type side of the nanotube
p-n junction. Curves from bottom to top are for doping
fraction f � 4 3 1024 1023, in increments of 1024. Inset
shows a scaling plot for f � 8 3 1024, 9 3 1024, and 1023,
normalized to 1 at 1 mm from the junction.
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FIG. 3. Depletion width W vs doping fraction f, calculated
two different ways (see text). Solid line is AeB�f , fitted to
the low-f data. Dotted line is the rms width of the response
function x (see text).

Then, using the asymptotic form of G�z� in Eq. (3),
we obtain for W ¿ R the approximate expression W �
R exp�ee0Eg�e2RNf�, where e0 is the permittivity of free
space. To the extent that the depletion width reflects the
fixed ionic charge and the electrostatic kernel, it should be
insensitive to the precise accuracy of Eq. (2).

At high doping, W is in the nanometer scale. In
Eq. (2) we have approximated the free-carrier susceptibil-
ity x�r 2 r 0� � ds�r��dV �r 0� as a strictly local function
x�r�d�r 2 r 0�, so the actual width of x�r 2 r 0� places a
lower bound on the length scale at which our calculations
are quantitatively accurate. We show the rms width of x

(within linear response theory and the effective-mass ap-
proximation) in Fig. 3 [15]. For f . 1023, the width of
x becomes greater than W , and our results are qualita-
tive rather than quantitative. (For f . 1023, the average
distance to the nearest dopant becomes comparable to W ,
so dopant fluctuations also become an interesting issue
is this regime.) Since W already reaches the nanometer
scale for f � 1023, our conclusions should be unaffected
by the reduced accuracy at higher doping.

At low doping, the large depletion width presumably
makes the device useless for nanoelectronics. The high-
doping regime should be better for nanoscale applications,
since the band bending and charge variation occur over
nanoscale distances. Doping by alkali or halogen atoms
packed inside nanotubes [10] corresponds to the extreme
high-doping regime, f � 1022.

A potential limitation of the high-doping regime is
the possibility of substantial tunneling currents across the
junction. Such “ leakage current” must be small for good
device performance. We estimate the tunneling proba-
bility P for electrons at the Fermi level using the WKB
approximation, P � exp�22

R
kk�z� dz�, where the inte-

gral is between the classical turning points. Here kk�z� �
5176
FIG. 4. Tunneling conductance at zero bias vs doping fraction
f. See text for approximations.

�2��3aV0�� ��Eg�2�2 2 �eV�z��2�1�2 is the imaginary part
of the wave vector.

The resulting conductance, G � �4e2�h�P (from the
Landauer formula [16] with two channels), is shown
in Fig. 4. (For a Schottky barrier, the electrons need
only tunnel from the classical turning point to the metal
electrode at the origin, so the conductance is larger than
that shown in Fig. 4 but shows a similar variation with f.)
For f . 2 3 1023, the tunneling probability is of order 1,
so the device gives poor rectification.

Below f � 1023, doping is nondegenerate at room
temperature, so there are no states at the Fermi level for
tunneling. Even in this regime, tunneling may be large
at moderate reverse bias. Above f � 1023, the tunneling
distance shrinks rapidly to around 2W ; at slightly higher
doping, 4kkW is of order unity, giving substantial tunnel-
ing. This qualitative picture should remain true despite
the limited accuracy of W and of the WKB approximation
in this regime.

Thus, for the parameters used here, the p-n junction is
rendered unsuitable as a nanoscale rectifier by tunneling
for f . 2 3 1023, and by the large depletion length
for f , 2 3 1024. This range depends somewhat on
the values of tube radius R (which sets the band gap)
and e. Note that these constraints are only bounds, set
by the depletion width and the low-voltage tunneling
conductance. Consideration of the (much longer) length
scale of the charge tail, and the increase in tunneling with
reverse-bias voltage, may render the simple p-n junction
unsuitable as a nanoscale rectifier at any f [7].

The long-range charge transfer may have important
implications for other devices, and for doping in gen-
eral. We illustrate this for an n-i junction, shown in
Fig. 5. Because of the quasi-one-dimensional electrostat-
ics, “charge-transfer doping” (analogous to modulation
doping) is dramatically stronger than in planar devices.
In planar junctions, charge transfer creates a quasi-two-
dimensional electron gas confined near the interface. In
contrast, for the NT there is significant charge transfer up
to distances of microns or more. The carrier concentration
one micron from the junction is 4 orders of magnitude
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FIG. 5. Charge per C atom on the i side of the nanotube
n-i junction. The n side is doped f � 0.01. Inset shows
corresponding band diagram; dotted line is the Fermi level.

larger than in the isolated intrinsic tube, and corresponds
to the same number of carriers per atom as a doping of
1018 cm23 in bulk Si. This charge transfer drastically
increases the conductivity of the intrinsic tube, and may
permit new device designs for nanotubes, or provide a
laboratory for fundamental studies of the one-dimensional
electron gas without dopant scattering. In realistic device
designs, the charge will depend on the electrostatic bound-
ary conditions, providing further opportunities for control.

On the other hand, devices that require confinement
of the carriers could no longer rely on the electrostatics
of doping to provide strong confinement, and they might
need to be redesigned. Also, there is evidence that NTs
may be accidentally doped by atoms or molecules that
attach during growth or processing [5], or by charge
transfer from metal electrodes [4]. Because of the long
range of any charge transfer, such accidental doping could
severely affect performance unless taken into account in
the design of NT devices.

The effects described here certainly do not preclude the
successful operation of nanotube devices. For example,
the leakage current due to tunneling in highly doped NT
p-n junctions can be controlled by including a small
undoped segment of length L ¿ W between the p- and
n-doped regions. The band bending in this p-i-n system
then occurs over the length L rather than W . We have
verified this approach numerically. For f � 1022, the
tunneling probability is reduced by a factor � exp�22kL�,
where k is the imaginary part of the wave vector deep in
the band gap. For L � 15 nm, the tunneling current is
reduced by a factor �106.

The essential point is that nanotube devices are not
simply miniature versions of traditional devices. Because
of their reduced dimensionality the electrostatics, doping,
and charge transfer are dramatically different. Any at-
tempt to design NT devices must take this novel behavior
into account. While some traditional devices may be-
come unworkable, there will doubtless be opportunities
for other, entirely new device designs.
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