VOLUME 83, NUMBER 24 PHYSICAL REVIEW LETTERS 13 BceEMBER 1999

Quantum Algorithm Providing Exponential Speed Increase
for Finding Eigenvalues and Eigenvectors
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We describe a new polynomial time quantum algorithm that uses the quantum fast Fourier transform
to find eigenvalues and eigenvectors of a local Hamiltonian, and that can be applied in cases (commonly
found in ab initio physics and chemistry problems) for which all known classical algorithms require
exponential time. Applications of the algorithm to specific problems are considered, and we find that
classically intractable and interesting problems from atomic physics may be solved with between 50 and
100 quantum bits.
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Long before Shor’s ground-breaking algorithm [1]— which corresponds to the Hamiltonidh, and an approxi-
and the resulting surge of interest in quantum computmate eigenvecto¥, of U (and thus ofHf) that can be gen-
ing—Feynman suggested that a quantum computer mighfrated in quantum polynomial time; i.e., the machine can
be useful for simulating other quantum systems [2]. Thispe placed into a state corresponding/pusing a polyno-
suggestion was based upon the observation that quantufial number of quantum logic operations. Call the true
systems are described in a Hilbert space whose size growsgenvectorV and the true eigenvalug,. If the state
exponentially with the number of particles. Thus a col-y, satisfies the property thaV, | V)|? is not exponen-
lection of only 100 spin; particles, each of which could  tially small—that is, the approximate eigenvector contains
be specified by only two complex amplitudes were it iso-a component of the actual eigenvector that is bounded by a
lated, requires a total ' complex amplitudes for its polynomial function of the problem size—ther can be
state to be specified completely. This exponential explofound to accuracy in time proportional tol /|(V, | V)|?
sion severely limits our ability to perform truelj initio” and1/e. Moreover, if the eigenvalug, is nondegener-
(first principles) calculations; since it is obviously not pos-ate, the algorithm will also reveal the eigenvectowith
sible to even describe the state of anything but the smalleglolynomial accuracy. (Eigenvectors can also be found in
quantum systems, one must resort to various approximahe degenerate case, but this is slightly more complicated
tion techniques to calculate properties of interest. and will be discussed below.)

Recent work in quantum computation has revealed vari- |ntuitively, what the algorithm does is resolve the guess
ous techniques fosimulating physics on a quantum com- into its non-negligible components and determine the
puter [3—8], and it has been demonstrated that this can, ifrresponding eigenvalues. If the operaiiofand thus its
fact, be accomplished efficiently, as Feynman supposegigenvectors) is of exponentially large dimension—which
However, there has been comparatively little work dongt typically is—there are no known classical algorithms
on algorithms whiclralculate static properties of a physi-  that can find even the eigenvalues in polynomial time.
cal system [8]. In particular, of all the questions which ajthough the requirement that there exist an initial state

one might ask about a quantum system, there is one moghctor v, with the specified properties may appear to be
frequently asked and for which one would most greatlyoyerly restrictive, it is frequently (if not usually) possible

desire an efficient algorithm: What are the energy eigeny, gptain such a guess for “real” problems using existing
values and eigenstates? In this Letter, we provide a quaRqassical techniques. For example, in any physical system
tum algorithm that can find eigenvalues and eigenvectorg;ity discrete energy levels that are not exponentially close
_of a Hamiltonian operator in cases that occur frequ_entlyfogether near the ground state (such as an atom), if it
in problems of physical interest. Moreover, the algorithmis "nossible to obtain classically any state vector with
requires an amount of time which scales as a polynomialypected energy merely less than the first excited state (by
function of the number of particles and the desired accuy nonexponentially small amount), then this state vector
racy, whereas all classical algorithms (with known com-, st contain a non-negligible component of the ground
plexity) require an exponential amount of time. state and—although it may not remotely resemble the
The problem to be solved can be precisely stated as fobround state—could be used as the approximate $late

lows. Consider the time-evolution operat’r})r= e~W/MHL o determine the true ground state and ground state energy
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in polynomia time. Finadly, if for some problems it is
not possible to obtain classically a guess with the desired
properties, it may often be the case that the state vector
V, may be generated using a quantum algorithm, such as
guantum simulated annealing.

We begin by describing a subroutine which can be ap-
pliedto any U that can beimplemented in quantum polyno-
mial time. (It was shown in [3] that thisincludes the time
evolution operator corresponding to any local Hamilton-
ian.) A similar subroutine was previously (though inde-
pendently) described by Kitaev in [9] and refined by Cleve
et al. in [10]. They show how one can obtain an eigen-
valuewith exponential precisionif oneisinitialy giventhe
eigenvector and devices that can perform U, U?, U4, ...,
and U?"; they then use this subroutine for factoring (in a
modified version of Shor’s agorithm) by randomly sam-
pling eigenvalues from the eigenspectrum. We employ
essentialy the same subroutine as Cleve et al. but in a dif-
ferent context (a physical simulation) and with a different
approach, beginni ng with an estimate of an e|genvector an

ablllty to perform U onIy (that is, we can perform U but

not U2, U*, ..., and U?"), and then determining both the
eigenstate and eigenvalue to polynomial precision.
Consider aquantum computer consistingof m + [ + w
qubits, where a total of m qubits (to be called the index
bits) are used for afast Fourier transform (FFT), atotal of
[ qubits describe the Hilbert space in which the operator
U acts, and w extra working qubits are required for tem-
porary storage. Let M = 2™. The accuracy of the result
will grow as 1/M —therefore, the required number of
qubits will scale as the log of the accuracy. Assume that
the m index qubits areinitially in the state |0) and that the
[ qubits are initially in the state V,; i.e., the initial state is

W) = 10) V), D

where the w work qubits are assumed to be |0) unless
specified otherwise. We perform a 77 /2 rotation on each
of the m index qubits to obtain the state

1 M—1 .
|¥) = N ,Zo 1) IVa). )

Next, one performs a series of quantum logic operations
that transform the computer into the state

poMel
W) = N ]ZO | YUY Va). ©)

This transformation is accomplished by applying the op-
eration U to the second set of I qubits (which areinitially
inthe state |V,,)) atotal of j times. It can be implemented
easily by performing a loop (indexed by i) from 1 to M.
Using standard quantum logic operations, set aflag qubit to
tbevaluell) if andonly if i < j and perform the operation
U conditioned on the value of this flag. Thus only those

components of the above superpositionfor whichi < j are
affected. Finaly, undo the flag qubit and continue with
the next iteration. After M iterations, the state above is
obtained.

At this point, it is helpful to rewrite the state in a
dlightly different manner. Label the eigenvectors of U
by the states | ) and the corresponding eigenvalues with
Ar. We can then write

Vo) = > crli) 4
X

in which case the state (3) above can be rewritten as
LS hirs
V) = —= > N WY D ckldr) ©)
\/szo k

1 M—1 )
= =S S Hien. 6
\/M . Ck P |.]>( k) |¢k> ( )

If we write A; as e/® and exchange the order of the
qubits so that the labels | ¢ ) appear first, the result is seen
then most clearly:

! M—1 _—
|‘I’>—\/—M§Ck|¢k>jgoe . (7)

It is now self-evident that a quantum FFT performed
on the m index qubits will revea the phases w, and
thereby the eigenvalues A,. The quantum FFT requires
only poly(m) operations, whereas the accuracy of the
resulting eigenvalue will scalelinearly with M or 2. Each
frequency is seen to occur with amplitude ¢, = (V, | ¢x);
by performing a measurement on the m index qubits, one
thus obtains each eigenvalue with probability |c,|>. Only a
polynomia number of trialsis therefore required to obtain
any eigenvalue for which ¢, is not exponentialy small.
If the initial guess |V,,) is close to the desired state (i.e.,
[V, | V)% is nearly 1), then only a few trials may be
necessary.

Moreover, once a measurement is made and an eigen-
value Ay is determined, the remaining / qubits “ collapse”
into the state of the corresponding eigenvector. One is
likely to be interested in various properties of the eigen-
vectors, and these can be determined by making various
measurements on the state. For ab initio quantum calcula-
tions, easily obtainable propertiesinclude those of greatest
interest: charge density distributions, correlation functions,
momentum distributions, etc. Of course, the state |¢y)
is still in some sense “trapped” inside the computer. But
since it is impossible to store as classical information the
2! phases associated with the state, one cannot possibly do
better. See [4] for a discussion of how relevant physical
information can be extracted efficiently from the quantum
computer.

An interesting subtlety occurs if the eigenvalue found
above is degenerate or nearly degenerate, by which we
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mean that there are severa eigenvalues which differ by
less than the accuracy 1/M. (Note, however, that nearly
degenerate states can be resolved in polynomial time, if
desired, as long as they are not exponentially close to-
gether.) For degenerate or nearly degenerate eigenvalues,
the measurement projects the system into the correspond-
ing subspace. One can then determine properties of this
subspace—that is, the relevant physical properties of the
system—through additional measurements as described
above. Furthermore, one can also use this technique to
detect the presence of a degeneracy by simulating a small
perturbation or by varying the initial conditions.

We now consider more precisely how we use this
subroutine to find the eigenvectors and eigenvalues of a
real Hamiltonian. Generally, one wishes to find energy
eigenstates for a Hamiltonian of the form

H=>Y(T+V)+ >V, (8)
i=1 i>j

where n isthe number of particles, T; isthekinetic energy,
V; is the external potential, and V;; is the interaction
between the particles. (Other terms can be included, as
long asthey operate on only afew particlesat atime.) The
time evolution operator is generated using the technique
described in [3]; the key ideaistowrite H = > H, (where
each H; actson only k qubits at atime) and

ﬁ(l) — o iHl — (efiHl(l/m)efiHﬂt/m)”.efin(l/m))m

t2
+ %[H,,Hj]zm + ... (9)

Let U; = e "://m)  Eachterm U; can beimplemented
efficiently, because it acts in a space of only k quantum
bits, where k is small. For large enough m, the second
term on the right (and the higher order terms) approaches
zero. |t is therefore possible to generate U(r) by acting
on the state with each U; in series, atotal of m times. In
order to simulate U(r) with an accuracy e, one needs to
apply O(#%/€) quantum logic operations [11].

For a specific problem, the form of the matrices U;
depends greatly on the basis set chosen to describe the
Hilbert space. Moreover, the choice may strongly impact
the size of the basis required to describe the system ac-
curately. Virtually any basis set may be used: position
space, momentum space, wavelets, single electron solu-
tions for an effective potential, etc. Aslong as the single
particle basis is of a fixed size, then the operators U; can
aways be calculated in the chosen basis and implemented
using O(d*) operations, where d is the dimension of the
single particle basis set [12]. On the other hand, there is
a tradeoff between memory and speed. By using the po-
sition or momentum space representation, one needs only
O(poly(k)) = O(poly(logd)) operations to perform each
U;; however, a large number of qubits are required to
describe the eigenstates accurately. By choosing a more
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elaborate basis set, one can vastly reduce the required num-
ber of qubits, but a much larger number of quantum logic
operations O(d*) may be necessary to implement each U, .
Thus one finds that, just as with conventional computa-
tions, the choice of basis sets in the quantum computation
will depend upon the specific problem at hand and the spe-
cific capabilities of the actual computing machine.

Normally, the initia state V, will be the result of a
classical calculation, for example, a Hartree-Fock calcula
tion or configuration interaction calculation. Any ab initio
technique which results in a known wave function can be
used. (Note that this does not include those techniques
based on density functional theory, as we require a wave
function, not simply a charge density distribution.) If the
input wave function is not already symmetrized or anti-
symmetrized, we can use the agorithms described in [4]
to do so efficiently.

Finally, we consider state-of-the-art ab initio calcula
tions of atomic energy levels in order to compare the
quantum algorithm described above with known classi-
cal techniques. Problems from atomic physics serve as
a particularly good benchmark because extremely accu-
rate experimental data are widely available. The quantum
algorithm corresponds most closely to what is known
as “complete active configuration interaction” or “full
configuration interaction” techniques, because the many-
particle basis set includes all possible products of single
particle basis vectors. This approach is most valuable in
situations where the correlation energy is large and where
many “configurations” are of similar energy (thistypically
occurs when many electrons are in open shells). Unfor-
tunately, it is difficult to state precisely the minimum size
problem for which the quantum calculation surpasses the
best classical calculations, because a variety of sophisti-
cated techniques are used to avoid the exponential explo-
sion in basis states. That is, the most accurate classica
calculations do not employ directly the full configuration
interaction method. Based on [13], however, we estimate
that a calculation of the energy levels of B (five electrons),
using roughly 20 angular wave functions and 40 radial
wave functions per particle—for atotal of 800 single par-
ticle wave functions and therefore 800° =~ 10" full many-
body basis states—may provide more accurate results than
any classical calculation performed to date. At the very
least, such a calculation would reveal scientifically inter-
esting (and classically unobtainable) results with respect to
electron correlation energies in B and the relative impor-
tance of various orders of excited configurations.

A quantum calculation of the B ground state, using a
basis set as described above, can be accomplished with
60 qubits: 10 per particle to represent the state of the atom
(for a total of 50 qubits), 6 or 7 qubits for the FFT, and
afew additional “scratch” qubits. Unfortunately, the two
particle operators (generated by the Coulomb attraction be-
tween pairs of electrons) take place in a subspace of di-
mension (2!%)2; they therefore are represented by matrices
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with 240 elements. While implementing such an opera-
tor by brute force is likely to remain intractable for the
foreseeable future, it is possible to perform the necessary
transformation using a quantum algorithm. One possible
technique is to temporarily change basis sets for pairs of
particles while calculating their Coulomb interaction; in
position space, the matrices are diagonal and easy to cal-
culate. This method will require an additional 40 qubits
for temporary work space, and it followsthat in order to re-
disticaly perform an “interesting” cal culation using the al-
gorithms described previously, one may possibly require a
guantum computer with asmany as 100 qubits. Of course,
a more efficient quantum algorithm for implementing the
Coulomb interaction for a specific basis might not require
as many additional qubits [14].

In areal implementation, one will need to cope with
errors of two forms. those that effect the FFT (and the
correlations between the index qubits and the wave func-
tion qubits) and those that effect the time evolution of the
simulated Hamiltonian. The first type will dlightly per-
turb the eigenvalues, though as discussed in [15], a quan-
tum Fourier transform is relatively insensitive to errors
made during its performance. The second type will also
create small perturbations, in either a consistent fashion
(if the errors are systematic) or a random fashion (unsys-
tematic errors); fortunately, the algorithm is fairly insen-
sitive to these errors as well. Finally, we note that errors
can also be handled using error correcting codes; although
more than 50—100 physical qubits would then be required
to realize the necessary logical qubits, thisis also the case
with other quantum algorithms when made fault tolerant,
and it remains true that the algorithm can perform inter-
esting calculations with only a few percent of the qubits
required for an interesting factoring problem.

In conclusion, we have provided a new guantum algo-
rithm which can be used to find eigenvectors and eigen-
values of a Hamiltonian operator. The algorithm provides
an exponential speed increase when compared to the best
known classica techniques. Problems from atomic phys-
ics may be the best place to perform the first real cal-
culations, both because accurate experimental data are
available to verify the resulting calculations, and because
the parameters involved appear to be within the foresee-
able range of small quantum computers. We estimate that
50—100 qubits are sufficient to perform interesting calcu-
lations that are classically intractable. Finally, we suggest
acouple of interesting questions which remain open. First,
athough we have made estimates regarding numbers of
required qubits, it would be interesting to calculate accu-
rately the number of quantum logic gates required to do
an interesting problem. Second, a more detailed analysis
of the effects of errors would be worthwhile, as would an
analysis of error correcting codes in this context.
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