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Quantum Algorithm Providing Exponential Speed Increase
for Finding Eigenvalues and Eigenvectors
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We describe a new polynomial time quantum algorithm that uses the quantum fast Fourier transform
to find eigenvalues and eigenvectors of a local Hamiltonian, and that can be applied in cases (commonly
found in ab initio physics and chemistry problems) for which all known classical algorithms require
exponential time. Applications of the algorithm to specific problems are considered, and we find that
classically intractable and interesting problems from atomic physics may be solved with between 50 and
100 quantum bits.
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Long before Shor’s ground-breaking algorithm [1]—
and the resulting surge of interest in quantum comp
ing—Feynman suggested that a quantum computer m
be useful for simulating other quantum systems [2]. T
suggestion was based upon the observation that quan
systems are described in a Hilbert space whose size g
exponentially with the number of particles. Thus a c
lection of only 100 spin-12 particles, each of which could
be specified by only two complex amplitudes were it is
lated, requires a total of2100 complex amplitudes for its
state to be specified completely. This exponential exp
sion severely limits our ability to perform true “ab initio”
(first principles) calculations; since it is obviously not po
sible to even describe the state of anything but the sma
quantum systems, one must resort to various approxi
tion techniques to calculate properties of interest.

Recent work in quantum computation has revealed v
ous techniques forsimulating physics on a quantum com
puter [3–8], and it has been demonstrated that this can
fact, be accomplished efficiently, as Feynman suppos
However, there has been comparatively little work do
on algorithms whichcalculate static properties of a physi-
cal system [8]. In particular, of all the questions whi
one might ask about a quantum system, there is one m
frequently asked and for which one would most grea
desire an efficient algorithm: What are the energy eig
values and eigenstates? In this Letter, we provide a qu
tum algorithm that can find eigenvalues and eigenvec
of a Hamiltonian operator in cases that occur frequen
in problems of physical interest. Moreover, the algorith
requires an amount of time which scales as a polynom
function of the number of particles and the desired ac
racy, whereas all classical algorithms (with known co
plexity) require an exponential amount of time.

The problem to be solved can be precisely stated as

lows. Consider the time-evolution operatorbU � e2�i�"�bHt
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which corresponds to the HamiltonianbH, and an approxi-
mate eigenvectorVa of bU (and thus ofbH) that can be gen-
erated in quantum polynomial time; i.e., the machine c
be placed into a state corresponding toVa using a polyno-
mial number of quantum logic operations. Call the tru
eigenvectorV and the true eigenvaluely. If the state
Va satisfies the property thatj�Va jV �j2 is not exponen-
tially small—that is, the approximate eigenvector contai
a component of the actual eigenvector that is bounded b
polynomial function of the problem size—thenly can be
found to accuracye in time proportional to1�j�Va jV �j2
and1�e. Moreover, if the eigenvaluely is nondegener-
ate, the algorithm will also reveal the eigenvectorV with
polynomial accuracy. (Eigenvectors can also be found
the degenerate case, but this is slightly more complica
and will be discussed below.)

Intuitively, what the algorithm does is resolve the gue
into its non-negligible components and determine th
corresponding eigenvalues. If the operatorbU (and thus its
eigenvectors) is of exponentially large dimension—whic
it typically is—there are no known classical algorithm
that can find even the eigenvalues in polynomial tim
Although the requirement that there exist an initial sta
vectorVa with the specified properties may appear to b
overly restrictive, it is frequently (if not usually) possible
to obtain such a guess for “real” problems using existin
classical techniques. For example, in any physical syst
with discrete energy levels that are not exponentially clo
together near the ground state (such as an atom), i
is possible to obtain classically any state vector wi
expected energy merely less than the first excited state
a nonexponentially small amount), then this state vec
must contain a non-negligible component of the groun
state and—although it may not remotely resemble t
ground state—could be used as the approximate stateVa

to determine the true ground state and ground state ene
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in polynomial time. Finally, if for some problems it is
not possible to obtain classically a guess with the desired
properties, it may often be the case that the state vector
Va may be generated using a quantum algorithm, such as
quantum simulated annealing.

We begin by describing a subroutine which can be ap-
plied to any bU that can be implemented in quantum polyno-
mial time. (It was shown in [3] that this includes the time
evolution operator corresponding to any local Hamilton-
ian.) A similar subroutine was previously (though inde-
pendently) described by Kitaev in [9] and refined by Cleve
et al. in [10]. They show how one can obtain an eigen-
value with exponential precision if one is initially given the
eigenvector and devices that can perform bU, bU2, bU4, . . . ,
and bU2m

; they then use this subroutine for factoring (in a
modified version of Shor’s algorithm) by randomly sam-
pling eigenvalues from the eigenspectrum. We employ
essentially the same subroutine as Cleve et al. but in a dif-
ferent context (a physical simulation) and with a different
approach, beginning with an estimate of an eigenvector, an

ability to perform bU only (that is, we can perform bU but
not bU2, bU4, . . . , and bU2m

), and then determining both the
eigenstate and eigenvalue to polynomial precision.

Consider a quantum computer consisting of m 1 l 1 w
qubits, where a total of m qubits (to be called the index
bits) are used for a fast Fourier transform (FFT), a total of
l qubits describe the Hilbert space in which the operatorbU acts, and w extra working qubits are required for tem-
porary storage. Let M � 2m. The accuracy of the result
will grow as 1�M — therefore, the required number of
qubits will scale as the log of the accuracy. Assume that
the m index qubits are initially in the state j0� and that the
l qubits are initially in the state Va; i.e., the initial state is

jC� � j0� jVa� , (1)

where the w work qubits are assumed to be j0� unless
specified otherwise. We perform a p�2 rotation on each
of the m index qubits to obtain the state

jC� �
1

p
M

M21X
j�0

j j� jVa� . (2)

Next, one performs a series of quantum logic operations
that transform the computer into the state

jC� �
1

p
M

M21X
j�0

j j� � bU�jjVa� . (3)

This transformation is accomplished by applying the op-
eration bU to the second set of l qubits (which are initially
in the state jVa�) a total of j times. It can be implemented
easily by performing a loop (indexed by i) from 1 to M.
Using standard quantum logic operations, set a flag qubit to
the value j1� if and only if i , j and perform the operationbU conditioned on the value of this flag. Thus only those
components of the above superposition for which i , j are
affected. Finally, undo the flag qubit and continue with
the next iteration. After M iterations, the state above is
obtained.

At this point, it is helpful to rewrite the state in a
slightly different manner. Label the eigenvectors of bU
by the states jfk� and the corresponding eigenvalues with
lk . We can then write

jVa� �
X
k

ckjfk� (4)

in which case the state (3) above can be rewritten as

jC� �
1

p
M

M21X
j�0

j j� � bU�j
X
k

ckjfk� (5)

�
1

p
M

X
k

ck

M21X
j�0

j j� �lk�jjfk� . (6)

If we write lk as eivk and exchange the order of the
qubits so that the labels jfk� appear first, the result is seen
then most clearly:

jC� �
1

p
M

X
k

ckjfk�
M21X
j�0

eivkj j j� . (7)

It is now self-evident that a quantum FFT performed
on the m index qubits will reveal the phases vk and
thereby the eigenvalues lk . The quantum FFT requires
only poly�m� operations, whereas the accuracy of the
resulting eigenvalue will scale linearly with M or 2m. Each
frequency is seen to occur with amplitude ck � �Va jfk�;
by performing a measurement on the m index qubits, one
thus obtains each eigenvalue with probability jckj

2. Only a
polynomial number of trials is therefore required to obtain
any eigenvalue for which ck is not exponentially small.
If the initial guess jVa� is close to the desired state (i.e.,
j�Va jV �j2 is nearly 1), then only a few trials may be
necessary.

Moreover, once a measurement is made and an eigen-
value lk is determined, the remaining l qubits “collapse”
into the state of the corresponding eigenvector. One is
likely to be interested in various properties of the eigen-
vectors, and these can be determined by making various
measurements on the state. For ab initio quantum calcula-
tions, easily obtainable properties include those of greatest
interest: charge density distributions, correlation functions,
momentum distributions, etc. Of course, the state jfk�
is still in some sense “ trapped” inside the computer. But
since it is impossible to store as classical information the
2l phases associated with the state, one cannot possibly do
better. See [4] for a discussion of how relevant physical
information can be extracted efficiently from the quantum
computer.

An interesting subtlety occurs if the eigenvalue found
above is degenerate or nearly degenerate, by which we
5163
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mean that there are several eigenvalues which differ by
less than the accuracy 1�M. (Note, however, that nearly
degenerate states can be resolved in polynomial time, if
desired, as long as they are not exponentially close to-
gether.) For degenerate or nearly degenerate eigenvalues,
the measurement projects the system into the correspond-
ing subspace. One can then determine properties of this
subspace— that is, the relevant physical properties of the
system— through additional measurements as described
above. Furthermore, one can also use this technique to
detect the presence of a degeneracy by simulating a small
perturbation or by varying the initial conditions.

We now consider more precisely how we use this
subroutine to find the eigenvectors and eigenvalues of a
real Hamiltonian. Generally, one wishes to find energy
eigenstates for a Hamiltonian of the form

H �
nX

i�1

�Ti 1 Vi� 1

nX
i.j

Vij , (8)

where n is the number of particles, Ti is the kinetic energy,
Vi is the external potential, and Vij is the interaction
between the particles. (Other terms can be included, as
long as they operate on only a few particles at a time.) The
time evolution operator is generated using the technique
described in [3]; the key idea is to write H �

P
Hi (where

each Hi acts on only k qubits at a time) and

bU�t� � e2iHt � �e2iH1�t�m�e2iH2�t�m� · · · e2iHk �t�m��m

1
X
i,j

�Hi , Hj�
t2

2m
1 . . . . (9)

Let Ui � e2iHi�t�m�. Each term Ui can be implemented
efficiently, because it acts in a space of only k quantum
bits, where k is small. For large enough m, the second
term on the right (and the higher order terms) approaches
zero. It is therefore possible to generate bU�t� by acting
on the state with each Ui in series, a total of m times. In
order to simulate bU�t� with an accuracy e, one needs to
apply O�t2�e� quantum logic operations [11].

For a specific problem, the form of the matrices Ui

depends greatly on the basis set chosen to describe the
Hilbert space. Moreover, the choice may strongly impact
the size of the basis required to describe the system ac-
curately. Virtually any basis set may be used: position
space, momentum space, wavelets, single electron solu-
tions for an effective potential, etc. As long as the single
particle basis is of a fixed size, then the operators Ui can
always be calculated in the chosen basis and implemented
using O�d4� operations, where d is the dimension of the
single particle basis set [12]. On the other hand, there is
a tradeoff between memory and speed. By using the po-
sition or momentum space representation, one needs only
O���poly�k���� � O���poly�logd���� operations to perform each
Ui ; however, a large number of qubits are required to
describe the eigenstates accurately. By choosing a more
5164
elaborate basis set, one can vastly reduce the required num-
ber of qubits, but a much larger number of quantum logic
operations O�d4� may be necessary to implement each Ui .
Thus one finds that, just as with conventional computa-
tions, the choice of basis sets in the quantum computation
will depend upon the specific problem at hand and the spe-
cific capabilities of the actual computing machine.

Normally, the initial state Va will be the result of a
classical calculation, for example, a Hartree-Fock calcula-
tion or configuration interaction calculation. Any ab initio
technique which results in a known wave function can be
used. (Note that this does not include those techniques
based on density functional theory, as we require a wave
function, not simply a charge density distribution.) If the
input wave function is not already symmetrized or anti-
symmetrized, we can use the algorithms described in [4]
to do so efficiently.

Finally, we consider state-of-the-art ab initio calcula-
tions of atomic energy levels in order to compare the
quantum algorithm described above with known classi-
cal techniques. Problems from atomic physics serve as
a particularly good benchmark because extremely accu-
rate experimental data are widely available. The quantum
algorithm corresponds most closely to what is known
as “complete active configuration interaction” or “ full
configuration interaction” techniques, because the many-
particle basis set includes all possible products of single
particle basis vectors. This approach is most valuable in
situations where the correlation energy is large and where
many “configurations” are of similar energy (this typically
occurs when many electrons are in open shells). Unfor-
tunately, it is difficult to state precisely the minimum size
problem for which the quantum calculation surpasses the
best classical calculations, because a variety of sophisti-
cated techniques are used to avoid the exponential explo-
sion in basis states. That is, the most accurate classical
calculations do not employ directly the full configuration
interaction method. Based on [13], however, we estimate
that a calculation of the energy levels of B (five electrons),
using roughly 20 angular wave functions and 40 radial
wave functions per particle—for a total of 800 single par-
ticle wave functions and therefore 8005 � 1015 full many-
body basis states—may provide more accurate results than
any classical calculation performed to date. At the very
least, such a calculation would reveal scientifically inter-
esting (and classically unobtainable) results with respect to
electron correlation energies in B and the relative impor-
tance of various orders of excited configurations.

A quantum calculation of the B ground state, using a
basis set as described above, can be accomplished with
60 qubits: 10 per particle to represent the state of the atom
(for a total of 50 qubits), 6 or 7 qubits for the FFT, and
a few additional “scratch” qubits. Unfortunately, the two
particle operators (generated by the Coulomb attraction be-
tween pairs of electrons) take place in a subspace of di-
mension �210�2; they therefore are represented by matrices
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with 240 elements. While implementing such an opera-
tor by brute force is likely to remain intractable for the
foreseeable future, it is possible to perform the necessary
transformation using a quantum algorithm. One possible
technique is to temporarily change basis sets for pairs of
particles while calculating their Coulomb interaction; in
position space, the matrices are diagonal and easy to cal-
culate. This method will require an additional 40 qubits
for temporary work space, and it follows that in order to re-
alistically perform an “ interesting” calculation using the al-
gorithms described previously, one may possibly require a
quantum computer with as many as 100 qubits. Of course,
a more efficient quantum algorithm for implementing the
Coulomb interaction for a specific basis might not require
as many additional qubits [14].

In a real implementation, one will need to cope with
errors of two forms: those that effect the FFT (and the
correlations between the index qubits and the wave func-
tion qubits) and those that effect the time evolution of the
simulated Hamiltonian. The first type will slightly per-
turb the eigenvalues, though as discussed in [15], a quan-
tum Fourier transform is relatively insensitive to errors
made during its performance. The second type will also
create small perturbations, in either a consistent fashion
(if the errors are systematic) or a random fashion (unsys-
tematic errors); fortunately, the algorithm is fairly insen-
sitive to these errors as well. Finally, we note that errors
can also be handled using error correcting codes; although
more than 50–100 physical qubits would then be required
to realize the necessary logical qubits, this is also the case
with other quantum algorithms when made fault tolerant,
and it remains true that the algorithm can perform inter-
esting calculations with only a few percent of the qubits
required for an interesting factoring problem.

In conclusion, we have provided a new quantum algo-
rithm which can be used to find eigenvectors and eigen-
values of a Hamiltonian operator. The algorithm provides
an exponential speed increase when compared to the best
known classical techniques. Problems from atomic phys-
ics may be the best place to perform the first real cal-
culations, both because accurate experimental data are
available to verify the resulting calculations, and because
the parameters involved appear to be within the foresee-
able range of small quantum computers. We estimate that
50–100 qubits are sufficient to perform interesting calcu-
lations that are classically intractable. Finally, we suggest
a couple of interesting questions which remain open. First,
although we have made estimates regarding numbers of
required qubits, it would be interesting to calculate accu-
rately the number of quantum logic gates required to do
an interesting problem. Second, a more detailed analysis
of the effects of errors would be worthwhile, as would an
analysis of error correcting codes in this context.
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