
VOLUME 83, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 13 DECEMBER 1999

5150
Probing the Spin Polarization in Ferromagnets
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The emission of correlated electrons from an itinerant ferromagnet following the impact of a polarized
electron beam is analyzed in terms of irreducible tensorial parameters that can be measured. Under
favorable conditions, specified in this work, these parameters are related to the spin polarization in
the ferromagnet. The formal results are illustrated by numerical studies of the polarized electron pair
emission from a Fe(110) surface, and a novel technique for the investigation of magnetic properties of
ferromagnets is suggested.

PACS numbers: 79.20.Kz, 72.10.–d, 75.30.Ds
The electronic and magnetic properties of low dimen-
sional systems with long-range magnetic order, such as
ultrathin ferromagnetic films and magnetic surfaces, are
currently under intensive investigations [1]. This is due to
the fundamental and technological importance of such ma-
terials. Magnetic systems with reduced symmetry can be
explored by a variety of techniques [1]. Low-energy spin-
polarized electron spectroscopy is particularly suitable as
the penetration depth is on the order of a few atomic lay-
ers [2]. In this method one resolves the quantum states of
the incoming and outgoing electrons to extract the acces-
sible information on the sample under investigation. On
the other hand, a promising technique emerged in recent
years where an electron pair, resolved in energy and mo-
mentum, is detected following the impact of an unpolar-
ized electron beam upon a non-magnetic sample [3–6]. As
demonstrated successfully for a variety of materials [3–5],
the electron pair carries, under favorable conditions, direct
signature of the Bloch spectral function which is a cen-
tral quantity as far as the electronic structure is concerned.
However, these studies [3,4] have been performed at higher
energies ��20 keV� and the role of the spin polarization
has not been yet addressed. Very recently, however, it has
been demonstrated by a pioneering experiment [7] that the
electron-pair emission depends strongly on the spin polar-
ization of the electron beam and the magnetization of the
0031-9007�99�83(24)�5150(4)$15.00
sample. Thus, it seems timely to inspect theoretically the
low-energy polarized electrons emission from ferromag-
nets. We conclude the following: (i) the electrons’ spectra
are quantified fully by a set of irreducible tensorial com-
ponents; (ii) under certain circumstances specified below,
the electron-pair spectrum is directly related to the spin-
resolved spectral function of the surface.

For a theoretical formulation we consider a reaction in
which two electrons are simultaneously emitted from a
ferromagnet with a defined magnetization direction M̂ af-
ter the impact of a monoenergetic spin-polarized electron
beam. The spins of the electrons in the incoming beam
and in the sample are assumed to be good quantum num-
bers. A corresponding experiment resolves the asymp-
totic wave vectors of the impinging and the two emitted
(vacuum) electrons which we label k1 and k0

1, k0
2, re-

spectively. No spin analysis of the outgoing electrons is
performed. The target surface is described by the state
vectors jfe,a,s2,ms2

�, where e is the ground state energy,
ms2 is the projection of the spin s2 of the ground state
along a quantization axis, and a denotes all other quan-
tum numbers. The spin polarization of the incoming beam
with projection ms1 of the electron’s spin s1 is character-
ized by the density matrix rs1

ms1 ms1
, whereas the population

of the magnetic sublevels of the state jfe,a,s2,ms2
� is given

by the density matrix r̄s2
ms2 ms2

. The scattering probability
is related to (atomic units, a.u., are used throughout)
W�k0
1, k0

2; k1� � C
X

ms01
,ms02

,ms1 ,ms2

ZX
a

M �k0
1, k0

2, ms01 , ms02 ; a, ms2 , k1, ms1�r
s1
ms1

ms1 r̄
s2
ms2

ms2�e, a�

3 M��k0
1, k0

2, ms01 , ms02 ; a, ms2 , k1, ms1�d�Ef 2 Ei� , (1)
where Ef is the final-state total energy. The initial-state
total energy Ei is Ei � Ek1 2 e, while Ek1 is the en-
ergy of the projectile beam and C � �2p�4�k1. All ener-
gies are measured with respect to the vacuum level. The
transition amplitude M �k0

1, k0
2, ms01 , ms02 ; a, ms2 , k1, ms1�

is given by M � �ck0
1,k0

2,ms01
,ms02

jT jfe,a,s2,ms2
wk1,s1ms1

�,
where wk1,s1ms1

is a spinor vacuum state describing
the incoming beam. The emitted electrons with spin
projections ms01 , ms02 are represented by the state vec-
tor jck0

1,k0
2,ms01

,ms02
�, whereas T is the transition operator.
In Eq. (1) the density matrices are diagonal. Further-
more, we adopt M̂ as a joint quantization axis for s1
and s2. For convenience we express the electrons’ fi-
nal state in the total spin space as jck0

1,k0
2,ms01

,ms02
� �P

SMS
�SMS j s

0
1m0

s1
, s01m0

s1
� jCk1

0,k2
0;SMS �, where S is the to-

tal spin and MS is its projection.
To disentangle geometrical from dynamical properties,

we expand the density matrices in state multipoles (statis-
tical tensors) rpq [8],
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rs1
ms1 ms1

�
2s1X

p1�0

�2�p12s12ms1 �s1 2 ms1 ; s1ms1 jp1q1 � 0�rp1q1�0 . (2)

r̄s2
ms2 ms2

�e, a� �
2s2X

p2�0

�2�p22s22ms2 �s2 2 ms2 ; s2ms2 jp2q2 � 0�r̄p2q2�0�e, a� . (3)

Substituting Eqs. (2) and (3) into the general expression (1) yields

W �
ZX
a

2s1X
p1�0

2s2X
p2�0

rp1q1�0r̄p2q2�0�e, a�Lp1,p2

q1�0,q2�0d�Ef 2 Ei� , (4)

where

L
p1,p2

q1�0,q2�0 � C
X
ms1

�2�p12s12ms1 �s1 2 ms1 ; s1ms1 jp1q1 � 0�
X
ms2

�2�p22s22ms2 �s2 2 ms2 ; s2ms2 jp2q2 � 0�

3
X
SMS

M �k0
1, k0

2, SMs; a, ms2 , k1, ms1�M
��k0

1, k0
2, SMs; a, ms2 , k1, ms1 � . (5)
The decisive point is that the sum over ms1 (ms2) in Eq. (5)
defines the component (along M̂) of a spherical tensor of
rank p1 �p2� [9]. This mathematical observation yields
important information as to the transformation behavior
of L

p1,p2

0,0 : L
p1�0,p2

0,0 (L
p1,p2�0
0,0 ) is a scalar with respect to

spin rotations generated by s1 (s2), i.e., it represents spin
averaged quantities in the s1 (s2) spin space, whereas the
components L

p1�odd,p2

0,0 (L
p1,p2�odd
0,0 ) can be regarded as

a spin orientation in the s1 (s2) spin space (for p1 � 1
it is a polar vector) and, hence, changes sign upon spin
reflection, i.e., L

p1�odd,p2

0,0 �2ms1� � 2L
p1�odd,p2

0,0 �ms1�
[L

p1,p2�odd
0,0 �2ms2 � � 2L

p1,p2�odd
0,0 �ms2�]. The tensorial

components with even p1 values are alignment parame-
ters, i.e., they describe the deviations in the spectra from
the unpolarized case. The above formalism is easily
generalized [9] to the case of strong spin-orbit coupling
and/or multielectron emission. For two electrons, Eq. (4)
reduces to
W �
ZX
a

(
L

0,0
0,0

"
r00r̄00 1 r00r̄10

L
0,1
0,0

L
0,0
0,0

1 r10r̄00
L

1,0
0,0

L
0,0
0,0

1 r10r̄10
L

1,1
0,0

L
0,0
0,0

#
d�Ef 2 Ei�

)
. (6)
The first term of the sum in Eq. (6) is the pair emission rate
averaged over the spin orientation of the incoming electron
beam and the spin polarization of the sample. The second
term describes the spin asymmetry due to the inversion
of the magnetization while the incoming electron beam is
being unpolarized. The third term is the spin asymmetry in
the electron-pair emission from unpolarized targets when
inverting the spin polarization of the electron beam. In
the absence of explicit spin interactions in the transition
operator T , e.g., spin-orbit coupling, the parameters L
1,0
0,0

and L
0,1
0,0 vanish. The last term of Eq. (7) is related to

the electron-pair emission from spin-polarized samples
by spin-polarized electrons. It is a polar vector both in
the s1 and the s2 spin spaces, i.e., L

1,1
0,0�2ms1 , ms2� �

2L
1,1
0,0�ms1 , ms2 � � L

1,1
0,0�ms1 , 2ms2�. The explicit forms

of L
1,1
0,0 and L

0,0
0,0 are derived from Eq. (5) to be
L
1,1
0,0 �

C
2

1X
S�0

X
Ms

�jM�k0
1, k0

2, SMs; k1, a, #, +�j2 2 jM�k0
1, k0

2, SMs; k1, a, ", +�j2

1 jM �k0
1, k0

2, SMs; k1, a, ", *�j2 2 jM�k0
1, k0

2, SMs; k1, a, #, *�j2� , (7)

L
0,0
0,0 �

C
2

1X
S�0

X
Ms

�jM�k0
1, k0

2, SMs; k1, a, #, +�j2 1 jM�k0
1, k0

2, SMs; k1, a, ", +�j2

1 jM �k0
1, k0

2, SMs; k1, a, ", *�j2 1 jM�k0
1, k0

2, SMs; k1, a, #, *�j2� . (8)
The projections of the spins of the sample state and the
electron beam parallel (antiparallel) to the quantization
axis are labeled, respectively, by the arrows * (+) and "
(#). In the total spin space, Eqs. (7) and (8) are expressed
in terms of the singlet and the triplet partial cross sections,
X�S�0� and X�S�1�, respectively, i.e.,

L
1,1
0,0 �

C
2

	X�S�1��k0
1, k0

2; k1; a�

2 X�S�0��k0
1, k0

2; k1; a�
 , (9)
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L
0,0
0,0 �

C
2

	3X �S�1��k0
1, k0

2; k1; a�

1 X�S�0��k0
1, k0

2; k1; a�
 �: 2Xtot. (10)

X�S�0� and X�S�1� are determined by the matrix elements,
T �S��k0

1, k0
2; k1, a�, of the singlet (S � 0) and triplet (S �

1) transition operators T S � �1 1 �21�SP12�T . Here,
P12 is a permutation operator that interchanges the two
emitted electrons. Thus, one obtains the symmetry prop-
erty T �S��k0

1, k0
2; k1; a� � �21�ST �S��k0

2, k0
1; k1, a�; i.e.,

in situations where an interchange of the electrons does
not modify the ionization dynamics the triplet scattering
amplitude and, hence, X�S�1� � CjT �S�1�j2 vanishes. An
example will be shown below. Until this point the elec-
tronic and structural properties of the sample have not been
yet specified. For perfect clean surfaces the integral over
a in Eq. (6) implies summation over the surface Bloch
5152
wave vector k2k and over the surface layers. The Bloch
theorem imposes a conservation law for the surface com-
ponents of the total wave vector of the emitted electrons
K1

k � k0
1k 1 k0

2k [10]; i.e., the change of K1
k from its ini-

tial value k1k 1 k2k (before the collision) is restricted to
a multiple of the surface reciprocal lattice vector gk. This
fact can be used to perform the integrals over k2k in Eq. (6)
which reduces then to a summation over the surface layers,
indexed by l, and over gk, i.e.,

W ~
X
gk,l

�2Xtot�k0
1, k0

2; k1, gk, l� 	r00r̄00�e,Lk, l�

1 r10r̄10�e,Lk, l�As�k0
1, k0

2; k1, gk, l�


3 d�Ef 2 Ei�� , (11)

where Lk � K1
k 2 gk 2 k1k. The “exchange scattering

asymmetry” has been defined as
As :�
X�S�1��k0

1, k0
2; k1, gk, l� 2 X�S�0��k0

1, k0
2; k1, gk, l�

3X�S�1��k0
1, k0

2; k1, gk, l� 1 X�S�0��k0
1, k0

2; k1, gk, l�
. (12)
To calculate the terms in Eq. (11), the state multipoles
r10 and r̄10 are needed. These can be obtained by invert-
ing the relations (2) and (3). In the standard represen-
tation, the density operators of the beam and the surface
are linearly expanded in terms of the Pauli matrices s as
rs1 � 1 1 P1 ? s and r̄s2 � w0�k2k, l, e� �1 1 P2 ? s �,
where w0�k2k, l, e� is the spin-averaged Bloch spectral
function of the layer l, and P1 and P2 are the polarization
vectors. The sample polarization is given by P2 �
	w�k2k, l, e, *� 2 w�k2k, l, e, +�
�	w0�k2k, l, e�
. Here
w�k2k, l, e, ms2� stands for the spin and layer resolved
Bloch spectral function. Thus we obtain r00r̄00 �
	w0�k2k, l, e�
�2 and r10r̄10 � 	w0�k2k, l, e�
P1P2�2,
and Eq. (11) reduces to

W ~
X
gk,l

w0�Lk, l, e�Xtot	1 1 A
d�Ef 2 Ei� . (13)

The asymmetry function A has been introduced as
A � P1

P
l	w�Lk, l, e, *� 2 w�Lk, l, e, +�


P
gk

XtotAsd�Ef 2 Ei�P
l0 w0�Lk, l0, e�

P
g0
k
Xtotd�Ef 2 Ei�

�
W�"*� 2 W�#*�
W�"*� 1 W�#*�

. (14)
Thus, for the calculation of the tensorial parameters two
major ingredients are needed: (i) The spin and layer-
resolved spectral function of the sample which can be
obtained from the trace of the imaginary part of the
corresponding Green function and (ii) the matrix element
of the singlet and triplet transition operators. Now we
calculate the terms in Eq. (13) for a Fe(110) surface.
The Bloch spectral functions used here are provided by
two independent calculations: (i) The scalar relativistic
full-potential linearized augmented plane-wave method
[11,12] and (ii) the full relativistic layer Korringa-Kohn-
Rostoker method [2,13]. For the calculations of the
transition matrix element we approximate the T operator
by T � Usurf 1 Uee�1 1 G2

eeUsurf�, where Uee is the
electron-electron interaction, G2

ee is the Green function
of the electron pair, and Usurf is the surface scattering
potential. For Usurf we employ, for a given layer, a linear
combination of nonoverlapping muffin-tin potentials [10].

As stated above, for certain geometries, the triplet scat-
tering amplitude vanishes due to symmetry and, hence,
As tends to 21 [cf. Eq. (12)]. Thus, if a monolayer
or a bulk system is considered the magnetic asymme-
try P2 can be scanned by determining W�"*� and W�#*�.
This yields a direct (relative) estimate of the popula-
tion of the spin states in the sample. For multilay-
ered systems, we have to consider the weighting factor
Xtot in Eq. (14). An example is shown in Fig. 1 for
a Fe(110) sample. The two electrons are detected with
fixed equal energies in the x-z plane and at symmetric
positions with respect to the z direction while the inci-
dent beam direction is varied in the z-y plane. The ex-
periment, in the geometry of Fig. 1, is invariant under a
180± rotation with respect to the z direction. This rota-
tion can be regarded as an interchange of k0

1 by k0
2 and,

since T �S�1��k0
1, k0

2; k1, a� � 2T �S�1��k0
2, k0

1; k1, a�, the
triplet scattering (X�S�1� � CjT �S�1�j2) vanishes.

The energies e in Eq. (14) are determined by e �
E0

1 1 E0
2 2 Ek1 , where E0

1 and E0
2 are the energies

of the vacuum electrons. Thus we tune E0
1, E0

2, and
Ek1 such that e coincides with the Fermi energy EF .
Now by varying b � cos 21ẑ ? k̂1 we scan P2 along
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FIG. 1. The asymmetry, as given by Eq. (14), for the emis-
sion of two equal-energy electrons from a magnetized Fe(110)
surface following the impact of a polarized electron beam
with an energy of 35 eV. The total energy of the pair is
fixed to E0

1 1 E0
2 � 30.15 eV. The two electrons are detected

in the y-z plane at symmetric position cos 21ẑ ? k̂0
1 � 40± �

cos 21ẑ ? k̂0
1 left and right to the z axis (cf. inset) and M̂ k x.

The angle of incidence b � cos 21ẑ ? k̂1 is varied in the x-z
plane, as shown by the inset. In this geometry, the triplet scat-
tering vanishes and A can be related to P2. The predomi-
nant contributions to A originate from the first and second
surface layers.

the G-N direction in the Brillouin zone, as shown in
Fig. 1. Alternatively, one may fix the direction Lk � k1k
and image P2�e� by varying, e.g., the incident energy.
For a polarized homogeneous electron gas, one scans (as
function of energy) the relative difference between the
occupied density of states of the majority and minority
bands.

Away from the points of high symmetry (cf. Fig. 1)
the scattering dynamics, as described by X�S�0� and
X�S�1� become dominant. An example is shown in Fig. 2
for b � 0. Again at the G point (k0

1k � 2k0
2k) the

asymmetry A, and in particular its sign, is determined
solely by P2. The For highly asymmetric energy sharing
the scattering exchange asymmetry As is small which
leads to a reduced asymmetry A, as seen in Fig. 2.
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FIG. 2. The spin asymmetry A as a function of the energy
sharing �E0

1 2 E0
2���E0

1 1 E0
2� for a fixed total energy �E0

1 1
E0

2� � 21 eV. The incident electron has an energy 26 eV
and a polarization degree of �65%. This is the same
target as in Fig. 1, however, we choose b � 0 and the two
electron detectors to lay in the x-z plane. As in Fig. 1,
the detectors are positioned at cos 21ẑ ? k̂0

1 � 40± � cos 21ẑ ?
k̂0

1. The theoretical results are averaged over the angular
resolution of the detectors. The experimental data are courtesy
of Ref. 7. The spectral functions are calculated within the
scalar relativistic full-potential linearized augmented plane-
wave method [11].
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