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Magnetic Field Induced Localization in a Two-Dimensional
Superconducting Wire Network
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We report transport measurements on superconducting wire networks which provide the first
experimental evidence of a new localization phenomenon induced by magnetic field on a 2D periodic
structure. In the case of a superconducting wave function this phenomenon manifests itself as a
depression of the network critical current and of the superconducting transition temperature at a half
magnetic flux quantum per tile. In addition, the strong broadening of the resistive transition observed
at this field is consistent with enhanced phase fluctuations due to this localization mechanism.

PACS numbers: 74.40.+k, 72.15.Rn, 73.23.–b
In a recent paper [1] a novel case of extreme local-
ization induced by a transverse magnetic field was pre-
dicted for noninteracting electrons in a two-dimensional
(2D) periodic structure. This new phenomenon, due to
a subtle interplay between lattice geometry and the mag-
netic field, differs from Anderson localization on two es-
sential points: it occurs in a pure system, without disorder,
and the system eigenstates are nondispersive states. In a
tight-binding (TB) approach, it can be simply understood
in terms of the Aharonov-Bohm effect which, at half a
flux quantum per unit tile (half flux), leads to fully de-
structive quantum interference. For this flux, the set of
sites visited by an initially localized wave packet will be
bounded in Aharonov-Bohm cages [1]. This effect is ab-
sent on other regular periodic lattices at half flux, such as
the square and the triangular lattices.

Superconducting wire networks are suitable to address
phase interference phenomena driven by a magnetic field
[2]. These systems are extremely sensitive to phase co-
herence of the superconducting order parameter over the
network sites which is exclusively determined by the com-
petition between the external field and the network geom-
etry [3]. Besides, the quantum regime is accessible even
in low Tc diffusive superconductors: since all Cooper
pairs condense in a quantum state, the relevant wave-
length is associated with the macroscopic superfluid ve-
locity and can be much larger than the lattice elementary
cell [4]. Also, the magnetic field corresponding to one
superconducting flux quantum F0 � hc�2e is easily ac-
cessible: it is about 1 mT for a network cell of 1 mm2,
in contrast to the unattainable 103 T for an atomic lattice.
In addition, some features of the TB spectrum, namely,
the Hofstadter butterfly [5], are experimentally accessible
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in the model system of a superconducting wire network
[3,6]. As shown by de Gennes and by Alexander [7,8],
the linearized Ginzburg-Landau (GL) equations for a su-
perconducting wire network can be mapped onto the
eigenvalues equation of a TB Hamiltonian for the same
geometry. This mapping is of particular relevance since
one of the remarkable findings of Ref. [1] is the total ab-
sence of dispersion in the TB spectrum at half flux. In
the context of a superconducting network, the localization
effect is expressed by the inability of the superconducting
wave function to carry phase information throughout the
network and, therefore, transport anomalies are expected.

In this Letter we present transport measurements on 2D
superconducting networks with the so-called T3 geometry
(see Fig. 1 inset). Our results allow us to confirm some
of the exotic features of the T3 energy spectrum related to
the localization mechanism. The field-temperature (H, T )
superconducting transition line is determined and related
to the ground state of the T3 spectrum. We also compare
the critical current as a function of the magnetic field with
calculations of the group velocity. The striking behavior
found at half flux is discussed as a possible signature of
localization effects. The strong broadening of the normal
to superconductor transition supports this interpretation.
Very few experiments were reported so far on localization
phenomena in superconducting networks and only the
issues of irrational magnetic flux [9] or disorder [10] have
been addressed.

The networks pattern was defined on a 600 nm thick
layer of positive UV3 resist using an e-beam writer
Leica VB6-HR. A 100 nm thick layer of pure aluminum
was e-beam evaporated in a ultrahigh vacuum chamber,
followed by the resist lift-off [11]. We designed two
© 1999 The American Physical Society
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FIG. 1. Reduced critical temperature vs frustration for Star
600 (heavy line, left axis). The theoretical curve has been offset
by 20.001 for clarity (small dots, right axis). Inset: Electron
micrography of the T3 network (a � 1.0 mm). Measuring
current is applied along the horizontal wires direction.

series with a large patterned area: Star 600 defined
on a 0.6 3 1 mm2 surface and Star 20 defined on a
surface of 0.02 3 1 mm2, which required stitching of
200 3 200 mm2 writing fields. The elementary tile side
length is a � 1 mm, the wires having 100 nm width and
100 nm thickness.

Dynamic resistance measurements were performed us-
ing a 33 Hz ac four terminal resistance bridge with an
ac measuring current of 20 nA. Sample probes were
connected to the cryostat terminals by ultrasonic bond-
ing of 25 mm gold wires. Noninvasive voltage probes
were placed at 0.2 mm from the current pads. The zero
field transition temperatures Tc�0� were 1.234 K for Star
600 and 1.240 K for Star 20, using a resistance criterion
of half the normal state resistance Rn at 1.25 K, which
are 4.20 V and 63.56 V, respectively. The resistive tran-
sition width in zero field is 3 mK (10% 90%) for both
samples indicating a good homogeneity of the networks.

The field dependent transition temperature Tc�H� was
monitored by locking the temperature controller to keep
the sample resistance at 0.5 Rn as the magnetic field
is varied. The experimental data are to be compared
with the lowest energy solution of the network linear GL
equations, which is expressed in terms of the ground state
eigenvalue eg� f� of the TB spectrum [8] by
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where j�0� is the superconducting coherence length at
zero temperature and f is the frustration. Neglecting field
screening effects, f � F�F0, where F � Ha2

p
3�2 is

the magnetic flux through a rhombus tile.
The transition line of Star 600 is plotted in Fig. 1 in re-

duced units 1 2 Tc� f��Tc�0� as a function of frustration.
Since the transition line is periodic on F0 we displayed
it only in the field range 0 # f # 1 [3]. A small para-
bolic background due to field penetration in the wires
was subtracted from the experimental Tc� f�. We also
display the theoretical Tc� f� obtained using Eq. (1) and
j�0� � 157 nm, the only adjustable parameter. The fine
field structure of the experimental data is very well de-
scribed by the theoretical curve. Distinct downward cusps
are visible at low order rationals f � 1�q, for q � 3, 4, 6,
and f � 2�9. They reflect the long range phase ordering
of the order parameter among network sites, established at
fields commensurate to the underlying lattice. These fea-
tures were discussed previously [3,9]. The novel feature
of the transition line occurs at f � 1�2, where the maxi-
mum of Tc� f� depression (30 mK) is achieved, associated
with an inversion of the field modulation concavity. This
anomalous cusp persists distinctly at all criteria used on
Tc� f� determination, from 0.06 Rn to 0.87 Rn, though the
downward cusps at other rationals fade out with increas-
ing temperature. This cusp is similar to the Tc variation in
a single loop geometry close to f � 1�2 [12] and is char-
acteristic of quantum effects determined on a finite length
scale. It indicates that at half flux the network transition
is determined by fluxoid quantization at independent tiles.

The maximum depression of Tc� f� at half flux shows
the strong incommensurability at this field. To our knowl-
edge, these results are the first experimental observation
of such an effect on an extended periodic network. Be-
sides, they indicate that 2D periodicity is not a sufficient
condition for a commensurate state to exist at rational f.

We also observed a strong broadening of the resistive
transition DTwidth, at half flux, as displayed in Fig. 2 for
Star 600. DTwidth is obtained as the difference between
the Tc� f� curves taken for criteria 0.6 Rn and 0.1 Rn,
respectively. The anomalous enhancement (up to 12 mK)
at half flux, twice the average width over most of the field
range, confirms the singular behavior found at this field.
At the strong commensurate fields f � 0, 1

6 , 1
3 , DTwidth

is sharply reduced to a few mK as expected for a phase
ordered system. Close to these fields, the phase of the
order parameter at the network sites is able to “lock” in

FIG. 2. Transition width vs frustration for Star 600. The large
broadening close to f � 1�2 indicates the presence of strong
phase fluctuations.
5103



VOLUME 83, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 13 DECEMBER 1999
the nearest commensurate state with the creation of few
mobile defects, broadening slightly the transition. Close
to half flux no commensurate state is available; thus phase
correlations between network sites cannot be established,
leading to a strong broadening of the transition.

In fact, the T3 tiling geometry can be viewed as an
ensemble of three coupled triangular sublattices, two
formed by the 3-fold sites and another by the 6-fold
sites. The singular properties of the T3 spectrum e� f�
at frustration f are simply revealed by the transformation

e2� f� 2 6 � 2 cos�pf�eT � fT � (2)

that relates e� f� to the triangular lattice eigenvalues
eT � fT � at frustration fT � 3f�2 [13]. At half flux, due to
cancellation of the cos�pf� prefactor, all the energy levels
collapse into two highly degenerate discrete levels at
e � 6

p
6, forming flat, nondispersive bands, in addition

to the e � 0 flat band. Because of the mapping of the TB
problem onto the linearized GL approach, the superfluid
velocity can be expressed in terms of the group velocity of
the band spectrum close to the ground state. In the context
of a superconducting wave function, a nondispersive state
cannot carry phase information through the network,
contrary to a Bloch state. Therefore, critical current
measurements give information on the network ability to
sustain a supercurrent, i.e., both a finite order parameter
and a finite superfluid velocity.

The critical current was studied as a function of field
from the dynamic resistance characteristics vs increasing
dc bias current at temperatures close to Tc�0�. The used
criterion was the threshold current for which the dynamic
resistance exceeds 0.2% Rn. Within the sensitivity limits
of our measurements, it corresponds to the maximum
current that the circuit is able to carry without dissipation.
To avoid heating effects due to feeding a large current,
we used sample Star 20 with 23 cells (20 mm) width.
The critical current density per wire Jc�T , f� is obtained
from the network critical current divided by the number
of parallel wires (25) and the wire cross section.

Close to Tc, we expect the critical current to follow
a 3�2 power law that generalizes the depairing current
of a one-dimensional superconducting wire [14] to a
superconducting network [15]:

Jc�T , f� � JnC� f�
µ

Tc� f� 2 T
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, (3)

where Jn is the zero field critical current density at T �
0 K. The field dependent coefficient C� f� is derived from
the band curvature, ≠2eg�≠k2, close to the ground state,
eg� f�, by
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In Fig. 3 is displayed the field dependence of Jc, at
T � 0.96 Tc�0� (1.185 K). Sharp peaks are obtained for
the same frustrations as the downward cusps observed in
5104
FIG. 3. Critical current density of Star 20 as a function of f
at T � 1.185 K. The depression at half flux is the signature of
the nondispersive state. Inset: Theoretical values at the same
temperature.

the transition line. The remarkable finding is the total
absence of a peak in the critical current at the lowest
order rational f � 1�2, exhibiting a clear minimum at this
field. For all studied temperatures the critical current was
always found to exhibit the lowest values at f � 1�2.

In the inset in Fig. 3 is displayed the theoretical
Jc obtained using (3) and (4) for f � p�q, q , 50.
We used T � 0.96 Tc�0� and Jn � 7 3 106 A cm22,
estimated from a 3�2 power law fit of the zero field
Jc�T , 0� data. The critical current consists of successive
d functions at rational frustration f � p�q except at
1�2. The highest values of Jc were obtained for f �
0, 1

6 , 1
3 and the symmetric values. For these rational

frustrations the spectrum is bandlike and the group
velocity is finite (Bloch states). The same applies for
other regular periodic lattices such as the square lattice
where a checkerboard commensurate state leads to an
important peak at f � 1�2 [15]. However, in the T3
case at half flux the group velocity is strictly zero due
to the absence of dispersive states and hence the critical
current vanishes. This situation is original for an infinite
tiling and is due to the special T3 geometry. A similar
effect is found when f approaches irrational frustration
(for example, at small frustration f � 1�q, with large
q): the bandwidth then becomes exponentially small and
therefore the group velocity and the critical current are
suppressed.

The experimental data follow the same qualitative be-
havior vs field as the theoretical predictions. The 3�2
power dependence of Jc vs temperature at constant mag-
netic field was observed in the temperature range Tc� f� 2

T , 20 mK. Namely, the field dependent coefficient
C� f� at half flux is reduced to 17% of its zero field value.
The C� f� depression, thus of Jc, reflects the effect of
the band structure on the superfluid velocity and provides
strong evidence of the nondispersive character of the state
at f � 1�2, although the measured critical current does
not vanish.
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One possible explanation for the incomplete suppres-
sion of Jc is the network’s finite size. A current carrying
state (an edge state similar to surface superconductivity
in finite type-II superconductors) exists along each edge
of the finite network and is expected to lead to a non-
zero supercurrent. A second possible origin for finite Jc

is the influence of the GL nonlinear term which was ne-
glected in Eq. (3). Presumably, the nonlinear terms in
the GL formulation are responsible for degrading the fine
features of the band structure and therefore give a finite
critical current. The critical current observed in Fig. 3 at
small frustrations, for example, close to zero, may have
the same origin. To go further, an exact solution of the
nonlinear GL equations would be needed. Nevertheless,
as demonstrated by Abrikosov [16], a good physical in-
sight into the superconducting properties can be obtained
from the eigenstates of the linearized GL equation.

This phenomenon suggests interesting properties of the
vortex sublattice. In this context, the coupling between
network sites can be expressed as a landscape of energy
barriers against vortex motion. For example, at f � 1�3,
a periodic vortex configuration can be easily constructed,
matching perfectly the underlying lattice. This configu-
ration is strongly pinned and very stable against driving
currents, leading to a large critical current. The decou-
pling of some network sites at f � 1�2 suggests that, in
the absence of pinning, the vortex configuration will be
highly disordered. Therefore, a significant dissipation is
expected for small driving currents, as revealed in our ex-
periments by the suppression of critical current and the
anomalous transition broadening. These considerations
are supported by preliminary experiments on vortex deco-
ration which indicate a highly disordered vortex distribu-
tion at f � 1�2 and will be addressed elsewhere.

More subtle is the commensurate state at f � 1�6,
which corresponds to the fT � 1�4 state of the triangular
lattice formed by the 6-fold sites [see Eq. (2)]. As
shown in Ref. [17], the uniformly frustrated XY model
on a triangular lattice at fT � 1�4 presents an accidental
degeneracy of the ground state with zero energy domain
walls which can weaken the global phase coherence.
In our experiments we do observe a critical current
peak at f � 1�6, almost as large as at f � 1�3. The
singular behavior observed experimentally at f � 1�2
( fT � 3�4) is completely absent at f � 1�6 ( fT � 1�4)
and, therefore, cannot be simply related to the triangular
lattice problem. Besides, it is not clear if the accidental
degeneracy persists for a tight-binding coupling.

In summary, the anomalous transport behavior of the T3
superconducting networks at half flux is consistent with
the localization effect predicted in Ref. [1]. The transition
line is in excellent agreement with the related T3 ground
state. The broad transition width at half flux indicates
a strong enhancement of phase fluctuations which we
assign to destructive quantum interference at this field.
The reduction of the critical current at f � 1�2, which
was never observed so far in periodic superconducting
networks, illustrates the inability of the network to sustain
a transport current. This behavior is the analog, in
the superconductor case, of the metal-insulator transition
predicted in Ref. [1].
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