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Disorder, Pseudospins, and Backscattering in Carbon Nanotubes
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We address the effects of disorder on the conducting properties of metal and semiconducting carbon
nanotubes. Experimentally, the mean free path is found to be much larger in metallic tubes than in
doped semiconducting tubes. We show that this result can be understood theoretically if the disorder
potential is long ranged. The effects of a pseudospin index that describes the internal sublattice structure
of the states lead to a suppression of scattering in metallic tubes, but not in semiconducting tubes. This
conclusion is supported by tight-binding calculations.

PACS numbers: 73.50.–h, 73.23.Hk, 73.61.Wp
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Single-wall carbon nanotubes (SWNTs) are tw
dimensional (2D) graphene sheets rolled into nanome
diameter cylinders [1,2] that can either be 1D metals
semiconductors, depending on how the sheet is ro
up. This surprising behavior follows from the unusu
band structure of a graphene sheet. It is a semim
with a vanishing gap at the corners of the first Brillou
zone (BZ) where thep (bonding) andp� (antibonding)
bands touch at two inequivalent wave vectorsK and K0

[Fig. 1(a)]. As the Fermi level moves due to chemical
electrostatic doping, the Fermi surface becomes circu
arcs at the corners of the BZ, as is shown in Fig. 1
for hole doping. This Fermi surface can be more simp
represented in the extended zone scheme by pie
together the arcs to form Fermi circles of radiusk centered
around theK �K0� point. When a graphene sheet
rolled up into a tube, the allowed wave vector compone
perpendicular to the tube axis become quantized, resul
in 1D subbands with allowedk’s represented by dashe
lines in Figs. 1(b) and 1(c). For metallic tubes [Fig. 1(b
one set of allowed wave vectors goes through theK
point and there are propagating modes atEf at 1k and
2k. This 1D mode has a linear (massless) dispersi
as is indicated in the figure. For semiconducting tub
[Fig. 1(c)], the allowed wave vectors do not go throug
theK point. For smallk, there are thus no allowed state
at Ef , but if the tube is doped sufficiently, the Fermi circ
reaches the nearest 1D subband and propagating m
exist, whose (massive) dispersion is shown in the figur

A wealth of scanned probe and electrical transport m
surements have been performed to probe the electr
structure and conducting properties of SWNTs [2]. Ove
all, the experimental results agree with the predictions
band structure given above. Many interesting open
sues remain, however, particularly concerning the eff
Coulomb interactions [3–6] and disorder [7–9] on th
electronic states. For example, recent theoretical w
has emphasized that the effects of disorder may be
nificantly reduced in metallic SWNTs for a number o
reasons [7–9]. Experiments indeed give compelling e
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dence that ametallic tube can have a very long mea
free path� on the order of a micron [10–14]. Initial ex-
periments on dopedsemiconducting tubes, however, have
yielded �’s that are orders of magnitude shorter [15,16
This is perhaps surprising, since the tubes are nearly st
turally identical and the amount of disorder likely ver
similar. In this Letter, we address this apparent discre
ancy between the properties of metallic and doped se
conducting nanotubes.

We begin by discussing the experimental evidence t
� can be very long in metallic SWNTs. Figure 2 show
a measurement of a nanotube rope�8 mm in length. At
low T , Coulomb oscillations in the conductanceG vs gate
voltage Vg are observed as electrons are added to
rope [10,11]. Using the charging energyU � 0.5 meV
determined from theT dependence, the effective lengt
Leff of the segment of tube to which the electrons a
added can be estimated [10,11]. For this device, we fi
Leff � 10 mm, which is approximately the physical tub

FIG. 1. (a) Filled states (shaded) in the first Brillouin zone
a singlep-type graphene sheet. The sheet contains two car
atoms per unit cell (lower right inset). The dispersions of th
states in the vicinity ofEf are cones (upper right inset) whos
vertices are located at theK and K0 points. The Fermi circle
around theK point, the allowedk vectors, and their dispersion
are shown in (b) and (c) for a metallic and semiconducti
tube, respectively. The dumbbells represent the molecu
orbitals comprising the states, with white-white, white-blac
and gray dumbbells representing bonding, antibonding, a
mixed orbitals, respectively.
© 1999 The American Physical Society



VOLUME 83, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 13 DECEMBER 1999
FIG. 2. Conductance versus gate voltage at different tempera-
tures for the metallic nanotube device shown in the upper inset.
All devices were prepared from unpurified nanotubes in the
manner described in Refs. [6] and [11]. The 3 nm diameter
and 8 mm long nanotube rope is draped over two contacts that
make tunnel contact to a metallic tube in the rope. A volt-
age applied to the doped substrate is used to adjust the carrier
density. The appearance of the CB oscillations only at very
low temperatures ��1.5 K� indicates that the electrons are de-
localized over the entire length of the tube, as indicated in the
lower inset. The observation of a single, regular period in the
Coulomb oscillations is strong evidence that a single metallic
tube in the rope is determining the conducting properties [6,11].

length, as previously observed by the DELFT group [10].
Note that any significant backscattering within the tube
would localize the electronic states on the scale of �
and effectively break the tube into a series of dots [17].
This would result in multiple Coulomb blockade periods
as a function of Vg with larger charging energies. The
observation of a single, well-defined, and small charging
energy is thus very strong evidence that � is many mms in
length.

Additional evidence for large �’s comes from measure-
ments of the two terminal conductance of nanotubes with
near-Ohmic contacts. For perfect contacts, the conduc-
tance is predicted to be G � �e2�h�STi , where Ti is the
transmission coefficient for each of the four 1D channels
propagating through the tube. Measurements by a number
of groups [11,13,14] have yielded conductances �e2�h,
indicating that the Ti ’s can be on the order of unity, even
for tubes many microns in length. Clearly, then, metallic
tubes can have mean free paths at the micron length scale.

We now turn to experiments on semiconducting tubes.
Tans et al. [15] and Martel et al. [16] measured electro-
statically doped p-type tubes and Bockrath et al. [18]
measured n-type tubes that were chemically doped. These
results can be analyzed using a model of a diffusive con-
ductor. In the simplest version, transport through the tube
is limited by scatterers spaced at a distance �, each with
transmission probability Ti � 1

2 . The conductance of a
tube of length L is then G � �4e2�h� ���L�. Using the
physical length of the tube and the maximum measured
conductance, these experiments indicate � � 2 nm at the
largest carrier densities. This is 3 orders of magnitude
shorter than the � found above for metallic tubes.

To investigate this striking discrepancy further, we have
performed extensive measurements on semiconducting
tubes at both room and low temperatures. Figure 3
shows the G vs Vg measured for one device. At
room temperature, the conductance increases as Vg is
decreased and holes are added to the valence band of
the semiconducting tube. (The saturation of G at large
negative Vg is believed to be due to the contact resistance
for tunneling into the tubes [15,16].) As T is lowered,
G is suppressed and breaks up into a series of peaks
as a function of Vg. At low temperatures �T , 20 K�,
G is immeasurably small at all Vg. The lower inset to
Fig. 3 shows the differential conductance, dI�dV , for a
different semiconducting tube device as a function of Vg

and V at T � 4.2 K. The data are plotted as a gray
scale. There is a gap around the origin where dI�dV � 0.
This gap shows complex behavior as a function of Vg

and is followed by a finite conductance region above
V � 25 50 mV. Qualitatively similar results have been
obtained on a number of devices consisting of both ropes
and single tubes (as determined by AFM measurements of
the rope/tube height).

The data in Fig. 3 are highly reminiscent of measure-
ments of the Coulomb blockade for a number of dots in
series [19,20]. In these systems, an electron must hop
through a series of quantum dots, each with a typical
charging energy U, for current to flow. Since at any Vg,
some of the dots will be blockaded, dI�dV � 0 at low
energies. Thermal energies kT or finite bias energies eV

FIG. 3. G vs Vg for a semiconducting nanotube device with
contacts separated by 0.5 mm. The diameter of the tube
(determined from its height in an AFM image) is 1.5 nm,
consistent with a single SWNT. Holes are added to the tube
below Vg � 5 V and the tube becomes conducting. Irregular
Coulomb oscillations are observed below T � 150 K. The
lower inset shows dI�dV vs V and Vg plotted as a gray
scale for a second device at T � 4.2 K. Complex structure
consistent with transport through a number of quantum dots in
series is seen. The T dependence and typical charging energy
indicates that the tube is broken up into segments of length
Leff � 100 nm, as indicated in the schematic.
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on the order of U are required to overcome the Coulomb
blockade and produce a finite conductance. We therefore
conclude that in semiconducting tubes disorder effectively
breaks the tube into a series of dots separated by tun-
nel barriers, as is schematically illustrated in the inset to
Fig. 3. The conductance is thus determined by tunneling
through a series of quantum dots.

We can estimate the size of these disorder-induced
dots from the temperature and bias dependence of the
Coulomb blockade features. Since the features appear
at energy scales 100 times larger than for the metallic
tube in Fig. 2, we find Leff � 100 nm. Since the device
is �500 nm long, this implies that the effective sample
consists of �5 dots in series. From the conductance at
room temperature, where charging effects are minimal,
we estimate that the tunnel barriers between the dots each
have transmission probabilities �0.001 0.1.

These measurements indicate that the diffusive trans-
port model discussed previously—consisting of a large
number of scatterers each with Ti � 1

2 — is inappropriate
for these samples. Instead, strong disorder over a much
longer length scale better describes this system. It is still
the case, however, that G ø e2�h, indicating that semi-
conducting tubes are much more strongly influenced by
disorder than metallic tubes.

To understand this difference, we first review in detail
the nature of the electronic states in graphite near Ef .
The band structure in the vicinity of the K �K0� point
can be described within the k ? p approximation by a 2D
Dirac Hamiltonian for massless fermions, H � h̄nFsk
[21]. Here k is the wave vector measured relative to
the K �K0� point and the s’s are the Pauli matrices.
This Hamiltonian is well known in both condensed-matter
and particle physics; in the latter case, it is used to
describe, e.g., a 2D massless neutrino. The states and
their corresponding energies are given by [8,9,21]

jk� �
1
p

2
eik?r

µ
2ibe2iuk�2

eiuk�2

∂
; E � bh̄nF jkj , (1)

where uk is the angle that k makes with the y axis in
Fig. 1(a) and b � 1�21� for states above (below) the en-
ergy at K. Equation (1) shows that, within this model,
the electrons possess a two-component vector that gives
the amplitude of the electronic wave function on the two
sublattice atoms. This vector can be viewed as describing
a “pseudospin,” in analogy to the two-component spinor
describing the electron’s real (physical) spin. The direc-
tion of this pseudospin determines the character of the
underlying molecular orbital state (e.g., bonding or anti-
bonding—see Fig. 1). Inspection of Eq. (1) reveals that
the pseudospin is tied to the k vector such that it always
points along k. This is completely analogous to the physi-
cal spin of a massless neutrino which points along the di-
rection of propagation. The states around K correspond to
right-handed neutrinos (pseudospin parallel to k), whereas
those around K0 are left-handed (pseudospin antiparallel
5100
to k). For the antiparticles �b � 21� this situation is re-
versed. Physically, this pseudospin means that the charac-
ter of the underlying molecular orbital state depends upon
the propagation direction. For example, a negative energy
state near K with a positive kx is built from antibond-
ing molecular orbitals while the state with 2kx is built
from bonding orbitals. This is schematically indicated in
Fig. 1(b).

Following Ando and collaborators [8,9], we now con-
sider scattering between these allowed states in a carbon
nanotube due to long-range disorder, i.e., disorder with
Fourier components V �q� such that q ø K. In this case,
the disorder does not couple to the pseudospin portion
of the wave function since the disorder potential is ap-
proximately constant on the scale of the interatomic dis-
tance. The resulting matrix element between states is then
[8]: j�k0jV �r�jk�j2 � jV �k 2 k0�j2 cos2��1�2�uk,k0	, where
uk,k0 is the angle between the initial and final states. The
first term is just the Fourier component at the difference
in the k values of the initial and final envelope wave func-
tions. The cosine term is the overlap of the initial and
final spinor states.

For a metallic tube [Fig. 1(b)], backscattering in the
massless subband corresponds to scattering between jkx�
and j2kx�. Such scattering is forbidden, however, since
the molecular orbitals of these two states are orthogonal,
as was clearly emphasized by Ando et al. [8,9]. In semi-
conducting tubes, however, the situation is quite different
[Fig. 1(c)]. The angle between the initial and final states
is ,p , and scattering is thus only partially suppressed
by the spinor overlap. As a result, semiconducting tubes
should be sensitive to long-range disorder, while metallic
tubes should not. Note that short-range disorder, q � K,
will couple the molecular orbitals together and lead to
scattering in all of the subbands.

To support this picture, we have performed tight-
binding calculations of the conductance G of metallic and
semiconducting tubes in the presence of a scattering po-
tential. We employ the Landauer formalism to calculate
the conductance from the transmission coefficients Ti of
each subband. A three-dimensional Gaussian potential of
the form V �r� � V0 exp�2r2�2s2� centered on one of
the atoms on the nanotube wall is included in the tight-
binding Hamiltonian. The transmission coefficients are
obtained from boundary condition matching between the
disorder-free region and the disordered region.

In Fig. 4, the calculated G�E� is shown for two
realizations of a single Gaussian scatterer with the same
integrated strength but different widths corresponding to
long-range (dashed lines) and short-range disorder (dash-
dotted lines). The massless 1D band of a metallic tube is
unaffected by a long-range scatter, but there is significant
backscattering of the states in the semiconducting tube
in the region near the threshold for transmission. There
is also backscattering of the higher subband states of
the metallic tube, as is expected from extending the
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FIG. 4. Tight-binding calculation of the conductance of an
(a) metallic (10,10) tube and (b) semiconducting (17,0) tube
in the presence of a Gaussian scatterer. The energy scale on
the abscissa is 0.2 eV per division in both graphs. The solid
lines show the results for a disorder free tube, while the dash
and the dot-dashed lines are for, respectively, a single long-
range �s � 0.348 nm, DV � 0.5 eV� and short-range �s �
0.116 nm, DV � 10 eV� scatterer centered on the wall of the
tube. Here DV is the shift in the on-site energy at the potential
center. The massless band of the metallic tube is unaffected
by the long-range scatterer, unlike the massive bands of the
metallic and semiconducting tube. All subbands are influenced
by the short-range scatterer. The inset shows an expanded
view of the onset of conduction in the semiconducting tube
at positive E, with each division corresponding to 1 meV.
To compare to the experimental data, we estimate that a gate
voltage change Vg of 1 V in Fig. 3 corresponds to a chemical
potential change E of the order of 1 meV.

arguments above. This calculation clearly demonstrates
that the two types of subbands (massive and massless)
are affected very differently by long-range disorder in
a manner accurately captured by the physics of the
pseudospin discussed above.

These theoretical considerations agree very well with
the experimental results. Long range disorder due to, e.g.,
localized charges near the tube, breaks the semiconducting
tube into a series of quantum dots with large barriers
and a dramatically reduced conductance. Metallic tubes,
on the other hand, are insensitive to this disorder and
remain near-perfect 1D conductors. In the future, it
will be of great interest to explore other experimental
manifestations of this pseudospin degree of freedom in
graphene materials.
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