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An Approximate Sign Sum Rule for the Transmission Amplitude through a Quantum Dot
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We study the phase of the transmission amplitude through a disordered quantum dot in the Coulomb
blockade regime. We calculate the phase dependence on gate voltage for a disorder configuration. We
show that over a “period,” consisting of a resonance and a transmission valley, the total phase change
is 0 (mod2p). Deviations from this sum rule are small in the parameter (level spacing and/or charging
energy). The disorder-averaged phase-phase correlation function is found showing interaction-induced
correlations between phases at different gate voltages.

PACS numbers: 73.23.Hk, 73.20.Dx, 73.50.Bk
The physics of quantum dots (QD) has been the subject
of intense theoretical and experimental studies in recent
years. Most of those studies focused on the role of
the Coulomb blockade (CB) in defining quantum transport
through such systems. Two novel interference experi-
ments [1,2] studied coherence and transmission phase—
rather than transmission probability—evolution in QD as
a function of the Aharonov-Bohm flux F and the gate
voltage Vg. The flux controls the relative phase through
the two arms of the interferometer while the gate voltage
drives the dot in and out of resonance, controlling the
mean number of electrons on the dot. The first experiment
[1], employing a two terminal setup, restricted the relative
phase of the interferometer (at F � 0) to be either 0 or
p . In the second experiment the setup was similar to
a two-slit interferometer and the (relative) phase of the
transmission amplitude through a QD in the CB regime
could be measured.

Several interesting aspects of the experimental data
have been subsequently discussed in the literature; see,
e.g., [3]. The most intriguing result though, discussed
below, has remained unaccounted for. It has to do with
the evolution of the transmission phase through the dot, a,
as Vg is varied, scanning resonances and the “transmission
valleys” between them. Hereafter we attach an index N
to a valley, corresponding to the number of electrons on
the dot over that range of Vg. The resonance separating
the valleys N 2 1 and N will be denoted by �N 2 1, N�.
We shall parametrize Vg in the valley by x: for the
valley N the parameter x ! 0 corresponds to the right of
resonance �N 2 1, N�, i.e., the point where the energies
of the dot with N 2 1 electrons and N electrons are
practically degenerate; x ! 1 corresponds to the left of
resonance �N , N 1 1�. A complete description of Vg is
given by the two variables �N , x�. The remarkable result
of the experiment is that as Vg is varied the change
in the transmission phase Da between two consecutive
valleys turns out to be 0 (mod2p). This is in distinct
contrast to the behavior of noninteracting electrons in
one-dimensional symmetric dots, where Da � p , or
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two-dimensional dots where, depending on the details
of the geometry and disorder, Da forms a sequence
of 0 and p .

There is a large number of works addressing the remark-
able transmission phase correlations observed in the experi-
ments. While we shall not present here a critical review
of all those attempts, it is worthwhile noting that each of
those works is subject to at least one of the following cri-
tiques: (i) An implicit assumption is made concerning the
matrix elements coupling the dot to the leads. (ii) A rather
particular geometry or potential is considered. (iii) Re-
strictive ranges of parameters are assumed.

Motivated by the experiment we present here a mecha-
nism which accounts for phase correlations for different
values of Vg. Our theory contains two desirable features
which were missing from previous works: (i) Our mecha-
nism is generic and does not invoke the peculiarities listed
above. (ii) We identify a large dimensionless parameter in
the light of which our theory is formulated. Our analysis
pertains to individual, disorder specific systems. In addi-
tion we also calculate the disorder-averaged phase-phase
correlation function which depends on the gate voltage
and observe interaction-induced correlations.

We argue below that as Vg is varied there are three dis-
tinct mechanisms for t to acquire a phase change of p:
there is an increase by p as the gate voltage is swept
through a resonance; between resonances we may en-
counter a near-resonance phase lapse (NRPL) and a valley
phase lapse (VPL), each involving a phase change of p .

Our sum rule states that the number of p changes
between consecutive valleys due to all these mechanisms
is even, resulting in Da � 0 �mod2p�. The frequency
of deviations from this sum rule is small in D�U where
D is the mean single particle level spacing and U is the
charging energy of the dot.

We consider an Aharonov-Bohm (AB) interferometer
where a QD is embedded in one arm. The arm containing
the QD can be modeled by the Hamiltonian

H � HL 1 HR 1 HQD 1 HT , (1)
© 1999 The American Physical Society



VOLUME 83, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 13 DECEMBER 1999
HL�R� �
X
k

´ka
L�R�y
k a

L�R�
k , (2)

HT �
X
k,j

VL
j,kc

y
j aL

k 1 H.c. 1 L $ R , (3)

HQD �
X
j

�ej 2 eVg�cy
j cj 1

U
2

N̂�N̂ 2 1� . (4)

HL,R describes the regions to the left and right of the QD,
HT represents the tunneling of electrons in and out of the
QD, and HQD describes the states of the isolated QD with
the constant interaction term.

The total transmission probability through the AB
interferometer, T �E�, is the modulus squared of the sum
of the transmission amplitudes through the two arms,
t�E� and t0 [the latter refers to the free arm and is
assumed to be constant, jt0j ¿ jt�E�j]. Since the entire
interferometer is coupled to external reservoirs, T �E�
needs to be convoluted with the Fermi function f,
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We first propose a qualitative picture which motivates
and expounds the phase correlations. Figure 1 depicts
(schematically) virtual processes (second order in the V ’s)
which, at zero temperature, contribute to the transmission
amplitude, say, from the left lead (L) to the right lead
(R). An off-resonance (valley) setup is shown. There are
electron-like processes, employing vacant levels (e.g., ej)
as intermediate states. The contribution of such a process
to t�E� is (neglecting corrections due to level broadening)
�VL

j VR�
j ��E 2 �ej 2 eVg 1 UN� 1 iG� where Vj �

Vj,k�E�
p

2pr�E� with N electrons on the QD. Here, r

is the density of states in the left or right lead. We focus
on a disordered QD where �ej	 and �Vj	 are fluctuating
and are described to a good approximation by random
matrix theory. The numerator thus has a random sign (in
the absence of a magnetic field it can be chosen real).

FIG. 1. Level scheme out of resonance, depicting electronlike
and holelike processes.
The contributions of the electronlike processes to t�E�
arise from a large number of random terms (of which
�U�D contribute significantly). We denote the sum
over the contributions with j $ N 1 2 ( j # N 2 1) the
“electron team” (“hole team”) [4]. The contribution of
the j � N 1 1 level ( j � N) will be referred to as the
“electron team captain” (“hole team captain”).

The following observations are now due: (a) The signs
of the four contributions (the “teams” and the “captains”)
are random, however, the teams in the N th valley and
in the �N 1 1�th valley differ very little from each other
(essentially by the contribution of one level). Thus, up to
events which are rare by the parameter D�U, the signs of
the e teams (h teams) in two consecutive valleys are the
same. (b) As eVg is increased in the valley the magnitude
of the e team (h team) increases (decreases). Furthermore,
as the resonance is approached, the relative importance of
the team diminishes and eventually near the resonance it
is a single level— the team captain—which governs the
transmission.

A phase lapse occurs when the signs of the e team
and the h team differ (VPL) or when a team does
not agree in sign with its captain (NRPL). Figure 2
depicts the evolution of the e contributions and the h
contributions to Ret over a range of Vg. In Fig. 2 we
display the signs of the four contributions to be e team �
1, e team captain � 1, h team � 2, h team captain �
2. A VPL occurs and the total number of phase gains
by p over a period is 2, rendering Da � 0 �mod2p�.
Evidently one needs to examine each of the 16 possible
sign assignments, each yielding a different pattern of t
as a function of Vg. But remarkably enough we find
that over a period as defined above p�at resonance� 1

p�number of NRPL� 1 p�number of VPL� � even.
Next we put the above picture in a more quantitative

framework. The transmission amplitude through the
interacting system is linked to the retarded Green’s
function Gij of the QD coupled to the leads by t�E� �P

ij VL
i VR�

j Gij . As we are interested in the elastic
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FIG. 2. The evolution of the e contribution and the h
contribution to Ret as a function of Vg (schematic); 3 denotes
a phase change of p. See text for the choice of the signs
for the “teams” and “captains” contributions. The total phase
change over a period [say from Vg�a� to Vg�b�] is 0 �modp�.
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cotunneling contributions [5] rendering Gij diagonal
(tunneling in and out of the same dot state), Gij can
approximately be determined by iterating the equation of
motion. Specifically we use an extension of Ref. [6] to
many levels in the dot,

t�E� �
X
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j VR�

j

X̀
N�0

PN

µ

nj�N

E 2 �ej 2 eN 2 xU� 1 iGj

∂
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1 2 
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∂
. (6)


· · ·�N � trN exp2bHQD . . . �trN exp2bHQD

denotes the
thermal average with N electrons. The probability to
find N electrons on the QD is given by PN � 
N̂�N�P

M
N̂�M . Deep in the valley N we have PM � dM,N .
The two terms of (6) describe the h-like and the e-like
contributions, respectively [7].

For the sake of simplicity the statistics we first intro-
duce is a toy model (to be revoked later), with the as-
sumptions that (i) the level spacing is constant ej � jD

mimicking the level repulsion and (ii) VL
j VR�

j � Vhj

where hj is a random variable which can take the val-
ues 11 and 21 with equal probability. This models the
fluctuations in the wave function due to disorder. The
relevant physics is already contained in the toy model as
a comparison with random-matrix-generated energies and
couplings reveals. Let us first consider the noninteracting
case. The transmission amplitude then becomes

t�E� � V
X
j

hj

E 2 �ej 2 eVg� 1 iG
, (7)

where the system can be tuned in or out of resonance by
the gate voltage eVg. At the resonance a increases by p .
The signs of hj govern the phase evolution between the
resonances. If h1 ? h2 . 0 there is a decrease by p

(phase lapse) between the resonances 1 and 2; for h1h2 ,

0 this phase lapse is absent. Note that in a one-
dimensional symmetric potential hj alternates in sign
implying no phase lapse. For a disordered noninteracting
QD the phase lapses occur at random [10]. Here we show
that interaction changes this picture considerably.

We note that near the resonances �N 2 1, N� the main
contribution to t in (6) comes from the electron contri-
butions of the N 2 1 valley and the hole contribution of
the N valley. The other contributions are smaller by a
factor of U�D. At the resonance �N 2 1, N� the level eN

is resonating which is the e-team captain in the N 2 1
valley and the h-team captain in the N valley. When we
single out the state eN in the electron and hole states we
see that the vicinity of �N 2 1, N� is equivalent to the
single particle resonance of level eN , hN��E 2 �eN 2

eVg� 1 iG� and background term AN21 and BN corre-
sponding to the e team (N 2 1 valley) and the h team (N
valley). These background terms for different valleys are
5096
strongly correlated, e.g., the level eN11 contributes both
to AN21 and BN12. Figure 3 shows the evolution of Ret
and a for a specific series of couplings for U � 0 (up-
per panel) and U � 60D (lower panel), and kT � D�12.
We focus on four resonances (at integer values of Vg)
with h1 � h2 � 2h3 � h4 � 1. For U � 0 we have a
phase lapse in the valley between the first and the second
resonance (Ret becomes zero there) and no phase lapses
between the others, as explained above. For interacting
electrons we observe near resonance phase lapses (NR-
PLs) due to the background terms which make the phase
stay at a � p for almost all values of Vg, except near the
resonances.

For the impurity-averaged correlations we define Ct �

t�x,N�t��x̄,N 1 dN���

p

jt�x,N�j2� 
jt�x̄,N 1 dN�j2� and

Ca � 
cosa�x, N� cosa�x̄, N 1 dN��. The calculation of
Ct follows [11]. The transmission amplitude [Eq. (6)] is
given by t�E� � VLVR

R
dv �GA

v�L, R� 2 GR
v�L, R�� 3

Gret
v �E, N , x� where VL,R describe the left and the right

barrier. We note that this expression consists of a
disorder-dependent (but interaction-independent) factor,
and one, Gret, which includes the interaction (but not the
disorder). One then readily obtains

Ct�x, N , x, N 1 dN�

� u
x�1 2 x�

dN

∑
log

µ
1 1

dN
xu

∂
1 log

µ
1 1

dN
�1 2 x�u

∂∏

(8)

with u � U�D. Ct decays slowly on a scale of dN �
U�D. We also observe the following: (i) For the non-
interacting case Ct falls abruptly to zero for dN � 1.
(ii) The results for the toy model and for a more realis-
tic model, where ej and VL

j VR�
j are obtained from diag-

onalizing random matrices, agree well, implying that the

FIG. 3. Ret (left) and phase (right) for a specific sequence
of resonances, for U � 0 (upper panels) and U � 60D (lower
panels).
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FIG. 4. Correlation function Ca vs the valley number for
kT � D�12. Interacting electrons (boxes and diamonds, U �
50D, x1 � x2 � 0.5) show strong correlations; noninteracting
electrons (circles, x1 � x2 � 0.25) do not. Toy model statistics
(boxes) agrees well with random matrix model statistics
(diamonds). Inset: Increasing the interaction increases the
correlations (upper curve: U � 50D, middle: U � 25D, lower:
U � 12D).

correlations are fairly insensitive to the way randomness
enters. These two remarks apply for Ca which is cal-
culated numerically. Figure 4 shows Ca vs the distance
in valleys dN for kT � D�12. Noninteracting electrons
forget about their phase already after one valley. In con-
trast, for interacting electrons we observe a slow decrease
of Ca , showing that information about the phase in val-
ley N is transferred to valley N 1 dN [12]. The inset of
Fig. 4 shows the decay of Ca for different values of the
interaction. The decay is slower for stronger interaction.

To summarize we have proposed here a generic mecha-
nism which gives rise to strong transmission phase corre-
lations. Our approximate sum rule is subjected to errors
which occur at a frequency �U�D. Our mechanism
involving a large number of small random contributions
is conceptually different from recent models [6,13] which
have utilized particularly strongly coupled levels and
which depend on rather specific geometric arrangements.

Comparing our analysis to experiments [2] we note that
in the latter D . G . kT , implying that the resolution
near the resonance may not be sufficient to observe NRPL
directly [14]. A crucial test of our theory would be to
go to small dots with small U�D, or, even better [15] to
use other gates to scramble the dot as we sweep from one
valley to another, suppressing correlations among valleys.
This should lead to a breakdown of our sign sum rule.

We are indebted to H. A. Weidenmüller for his participa-
tion in various stages of this work. We acknowledge use-
ful discussions with E. Buks, M. Heiblum, and C. Marcus.
The work was partially supported by the German-Israeli
Foundation, by DIP, and by the Minerva Foundation.
Work at the Weizmann Institute was supported by the
Center of Excellence of the Israeli Academy of Science
and Humanities.

[1] A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman,
Phys. Rev. Lett. 74, 4047 (1995).

[2] R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V.
Umansky, and H. Shtrikman, Nature (London) 385, 417
(1997).

[3] A. Levy Yeyati and M. Büttiker, Phys. Rev. B 52, R14 360
(1995); G. Hackenbroich and H. A. Weidenmüller, Phys.
Rev. Lett. 76, 110 (1996); Europhys. Lett. 38, 129 (1997);
C. Bruder, R. Fazio, and H. Schoeller, Phys. Rev. Lett. 76,
114 (1996).

[4] We acknowledge C. Marcus for suggesting to us this
terminology.

[5] D. V. Averin and Yu. N. Nazarov, Phys. Rev. Lett. 65,
2446 (1990).

[6] Y. Oreg and Y. Gefen, Phys. Rev. B 55, 13 726 (1997).
[7] We note that (6) is an approximation near the resonances.

In order to describe low temperature properties like the
Kondo effect higher iterations of the equation of motion
would be necessary [8]. However, since we focus on the
resonant tunneling regime h̄G & kT # D we assume that
the resonances have a width given by the unrenormalized
Gi � 2pr�jVL

i j
2 1 jVR

i j
2� [9].

[8] C. Lacroix, J. Phys. F 11, 2389 (1981); Y. Meir, N. S.
Wingreen, and P. A. Lee, Phys. Rev. Lett. 66, 3048 (1991).

[9] J. König, Y. Gefen, and G. Schön, Phys. Rev. Lett. 81,
4468 (1998).

[10] R. Berkovits, Y. Gefen, and O. Entin-Wohlman, Philos.
Mag. B 77, 1123 (1998).

[11] I. L. Aleiner and L. I. Glazman, Phys. Rev. Lett. 77, 2057
(1996). See also A. Kaminski, I. L. Aleiner, and L. I.
Glazman, Phys. Rev. Lett. 81, 685 (1998).

[12] As an alternative one may calculate the Fourier transform
with respect to dN of cosa�N , x� cosa�N 1 dN, x�.
This quantity underlines genuine long-range correlations,
eliminating “noise” due to the random locations of zeros
within a valley.

[13] G. Hackenbroich, W. D. Heiss, and H. A. Weidenmüller,
Phys. Rev. Lett. 79, 127 (1997); R. Baltin, Y. Gefen, G.
Hackenbroich, and H. A. Weidenmüller, Eur. Phys. J. B
10, 119 (1999); P. G. Silvestrov and Y. Imry, cond-mat/
9903299.

[14] At lower T Kondo physics might be relevant.
[15] C. Marcus (unpublished).
5097


