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Why Effective Medium Theory Fails in Granular Materials
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Experimentally it is known that the bulk modulusK and shear modulusm of a granular assembly
of elastic spheres increase with pressurep faster than thep1�3 law predicted by effective medium
theory (EMT) based on Hertz-Mindlin contact forces. To understand the origin of these discrepa
we perform numerical simulations of granular aggregates under compression. We show that EM
describe the moduli pressure dependence if one includes the increasing number of grain-grain c
with p. Most important, the affine assumption (which underlies EMT), is found to be valid forK�p�
but breaks down seriously form�p�.

PACS numbers: 81.05.Rm, 81.40.Jj
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The study of nonlinear elasticity and sound propa
tion in unconsolidated granular matter is a topic of gr
current interest [1]. In the simplest experiments, a pa
ing of spherical glass beads is confined under hydrost
conditions and the compressional and shear sound spe
yp and ys, are measured as functions of static confini
pressurep [2,3]. In the long-wavelength limit, the soun
speeds are related to the elastic constants of the ag
gate: yp �

p
�K 1 4�3m��r� and ys �

p
m�r�, where

r� is the system’s density. In a recent Letter [4], acous
measurements were made on bead packs under uni
stress and it was suggested that long wavelength comp
sional waves can be described in terms of an effec
medium. Thus, it would be of great value to have a
liable effective medium theory (EMT) to describe sou
propagation as a function of applied stress. However,
analysis, together with the work of others, raises seri
questions about the validity of the generally accepted t
oretical formulation. The EMT [5] predicts thatK andm

both vary asp1�3 (see below), and that the ratioK�m is a
constant (independent of pressure and coordination n
ber) dependent only on the Poisson’s ratio of the grain

Experimentally (see Fig. 1), the bulk and shear mod
increase more rapidly thanp1�3 and the values ofK�m

are considerably larger than the EMT prediction. The
discrepancies between theory and experiment could
due to the breakdown of the Hertz-Mindlin force law
each grain contact as proposed in Ref. [6] for the c
of metallic beads with an oxide layer, and in Ref. [7] f
grains with sharp angularities. Alternatively, they could
associated with the breakdown of some of the assumpt
underlying the EMT, for example, that the number
contacts per grain is pressure independent, which may
be the case as several authors have suggested [7,8].

In this Letter we report calculations ofK�p� and
m�p� based on granular dynamics (GD) simulations us
the discrete element method developed by Cundall
Strack [9,10] for an assembly of spherical soft gra
which interact via the Hertz-Mindlin force laws. W
find good agreement with the existing experimental da
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thus confirming the validity of the Hertz-Mindlin contac
theory to spherical grain packings. Further, we c
explain the two problems with the EMT described abov
First, if the calculated increase of the average coordinat
number withp is taken into account, the modified EMT
gives an accurate description ofK�p� found in the
simulations; form�p� we obtain a curve whose shape
in good agreement with the simulation data but who
values are seriously offset therefrom. Second, the EM
is based on theaffine approximation in which the motion
of each grain follows the applied strain. Physically, th
approximation follows from thewell-bonded assumption
that two grains originally in contact remain in contac
after an external load is applied. We show that, while th
assumption is approximately valid for the bulk modulu
it is seriously in error for the shear modulus; this is wh
the EMT prediction ofK�m differs significantly from the
experimental value.

Numerical Simulations.—At the microscopic level
the grains interact with one another via nonlinear Her
Mindlin normal forces and transverse forces. O
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FIG. 1. Pressure dependence of the elastic moduli from G
�≤�, experiments [Domenico��� [2], Yin ��� [3], and ours
���], and EMT equations (2a) and (2b) (dashed line): (a) bu
modulus and (b) shear modulus.
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approach is valid for grains in contact at a point which
is not singular, and may not be applicable to packings
of grains with sharp angularities, as may be present in
many granular materials with a distribution of contact
asperities. The normal force is fn � 2

3CnR1�2w3�2 (the
3�2 power law gives rise to the p1�3 dependence of
the moduli), and the transverse force is given as [11]
Dft � Ct�Rw�1�2Ds. Here the grain radii are R1
and R2, R � 2R1R2��R1 1 R2�, the normal overlap is
w � �1�2� ��R1 1 R2� 2 j �x1 2 �x2j� . 0, where �x1, �x2
are the positions of the grain centers and 2s is the relative
shear displacement between the two grain centers. The
normal force acts only in compression, fn � 0 when
w , 0. Cn � 4mg��1 2 ng� and Ct � 8mg��2 2 ng�,
where mg is the shear modulus, and ng is the Poisson’ s
ratio of the material from which the grains are made.
In our simulations we set mg � 29 GPa and ng � 0.2.
We assume a distribution of grain radii in which
R1 � 0.105 mm for half the grains and R2 � 0.095 mm
for the other half. Our results are, in fact, insensitive to
the choice of the distribution, as long as the distribution is
not very broad. We also include a viscous damping term
to allow the system to relax toward static equilibrium.

Our calculations begin with a numerical protocol de-
signed to mimic the experimental procedure used to pre-
pare dense packed granular materials. In the experiments
the initial bead pack is subjected to mechanical tapping
and ultrasonic vibration in order to increase the solid
phase volume fraction fs. The simulations begin with
a gas of 10 000 spherical particles located at random po-
sitions in a periodically repeated cubic unit cell approxi-
mately 4 mm on a side. At the outset, the transverse force
between the grains is turned off �Ct � 0�. The system is
then compressed slowly until a specified value of fs is
attained (see dashed lines in Fig. 2). The compression
is then stopped and the grains are allowed to relax. If
the compression is stopped before reaching the critical
volume fraction, fs � 0.64, corresponding to random
close packing (RCP) [1], the system will relax to zero
pressure and zero coordination number, since the system
cannot equilibrate below RCP. The compression is then
continued to a point above the critical packing fraction
and a target pressure is maintained with a “servo” mecha-
nism [9] which constantly adjusts the applied strain un-
til the system reaches equilibrium. Because there are no
transverse forces, the grains slide without resistance dur-
ing the relaxation process and the system reaches the high
volume fractions found experimentally.

The simulated granular aggregate relaxes to equilibrium
states in which the average coordination number �Z�p��,
increases with pressure as seen in Fig. 2. For low
pressures compared with mg, �Z� 	 6, while in two
dimensions the same preparation protocol gives �Z� 	 4.
Such low coordination numbers can be understood in
terms of a constraint argument for frictionless rigid balls
[12,13], which gives �Z� � 2D, where D is the dimension.
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FIG. 2. Average coordination number �Z� from GD at a
given pressure p �≤�. The dashed lines show the various
out-of-equilibrium trajectories taken by the system to reach
equilibrium as described in the text. The solid line is a fit
according to Eq. (1).

These values should be valid in the limit of low pressure
when the beads are minimally connected near RCP [13]
(or in the rigid ball limit mg ! `). For large values of p
more grains are brought into contact, and the coordination
number increases. Empirically, we find

�Z�p�� � 6 1

µ
p

0.06 MPa

∂1�3

. (1)

Comparison with Experiment.—Consider now the cal-
culation of the elastic moduli of the system as a func-
tion of pressure. Beginning with the equilibrium state
described above, we first restore the transverse component
of the contact force interaction (finite Ct). We then apply
an infinitesimal distortion, Deij , and measure the linear
response [14]. The shear modulus is calculated in two
ways, from a pure shear test, m � �1�2�Ds12�De12, and
also from a biaxial test, m � �Ds22 2 Ds11��2�De22 2

De11�. The bulk modulus is obtain from a uniaxial com-
pression or tension test, K 1 4�3m � Ds11�De11. Here
the stress sij is determined from the measured forces on
the grains [9], and the strain eij is determined from the
imposed dimensions of the unit cell.

In Fig. 1 our calculated values of the elastic
moduli as a function of pressure are compared with
EMT and with experimental data. Because there is a con-
siderable degree of scatter in the experimental results we
performed our own experiments with standard sound
propagation techniques. A set of high quality glass beads
of diameter 45 mm was deposited in a flexible container of
3 cm height and 2.5 cm radius. Transducers and a pair of
linear variable differential transformers (for measurement
of displacement) were placed at the top and bottom of
the flexible membrane, and the entire system was put
into a pressure vessel filled with oil. Before starting
the measurements, a series of tapping and ultrasonic
vibrations were applied to the container in order to let
the grains settle into the best possible packing. We then
5071
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applied confining pressures ranging from 5 to 100 MPa.
The pressure was cycled up and down several times
until the system exhibited minimal hysteresis. At this
point, shear and compressional waves were propagated by
applying pulses with center frequencies of 500 KHz. The
sound speeds and corresponding moduli were obtained by
measuring the arrival time for the two sound waves.

From Fig. 1 we see that our experimental and numerical
results are in reasonably good agreement. Also shown
are measured data from Domenico [2] and Yin [3] for
spherical glass beads. Clearly, the experimental data are
somewhat scattered. This scatter reflects the difficulty
of the measurements, especially at the lowest pressures
where there is significant signal loss. Nevertheless, our
calculated results pass through the collection of available
data. Also shown in Fig. 1 are the EMT predictions [5]

K �
Cn

12p
�fsZ�2�3

µ
6pp
Cn

∂1�3

, (2a)

m �
Cn 1 �3�2�Ct

20p
�fsZ�2�3

µ
6pp
Cn

∂1�3

. (2b)

The EMT curves are obtained using the same parameters
as in the simulations; we also set Z � 6 and fs � 0.64,
independent of pressure. At low pressures we see that K
is well described by EMT. At larger pressures, however,
the experimental and numerical values of K grow faster
than p1�3. The situation with the shear modulus is even
less satisfactory. EMT overestimates m�p� at low pres-
sures but, again, underestimates the increase in m�p� with
pressure.

To investigate the failure of EMT in predicting the cor-
rect pressure dependence of the moduli, we plot m�p1�3 in
Fig. 3. For such a plot, EMT predicts a horizontal straight
line but we see that the numerical and experimental results
are clearly increasing with p. We can explain this behav-
ior by modifying Eq. (2b) to take into account the pressure
dependence of the coordination number �Z�p�� from Fig. 2
[Eq. (1)] and also fs�p� (which is a much smaller effect).
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FIG. 3. Shear modulus from GD �≤�, experiments (open
symbols as in Fig. 1), and corrected EMT (dashed line), taking
into account the pressure dependence of �Z�p�� from Fig. 2
[Eq. (1)], as well as fs�p�.
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The modified EMT is also plotted in Fig. 3, and we see that
it predicts the same trend with pressure as the simulations
but has a significantly larger magnitude. The experimen-
tal data also seem to be following this trend but more data
over a larger pressure range are clearly needed. Not shown
in Fig. 3 is a similar analysis of K�p�, but the result is that
the modified EMT is in essentially exact agreement with
our numerical simulations. It is for this reason that we fo-
cus on m�p�.

To understand why m is overpredicted by EMT we
must examine the role of transverse forces and rotations
in the relaxation of the grains. (These effects do not
play any role in the calculation of the bulk modulus.)
Suppose we redefine the transverse force by introducing a
multiplicative coefficient a, viz., Dft � aCt�Rw�1�2Ds;
with a � 1 we recover our previous results. To quantify
the role of the transverse force on the elastic moduli,
we calculate K�a� and m�a� at a given pressure p �
100 KPa (Fig. 4a). Surprisingly, m becomes negligibly
small as a ! 0. As expected, K is independent of the
strength of the transverse force. To compare with the
theory we also plot the prediction of the EMT [Eqs. (2a)
and (2b)] in which Ct is rescaled by aCt . We see that the
EMT fails in taking into account the vanishing of m�a� as
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FIG. 4. (a) K�a� (squares), and m�a� (circles) versus a for a
fixed p�� 100 KPa� calculated from GD using only the affine
motion (open symbols), and using the full relaxation [nonaffine
motion (solid symbols)]. We also plot the corresponding EMT
prediction, [Eqs. (2a) and (2b)], as dashed lines. (b) Relaxation
of the shear stress �B ! C� after an affine motion �A ! B� in
the calculation of the shear modulus.
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a ! 0. However, it accurately predicts the value of the
bulk modulus, which is independent of a.

There are two main approximations in the EMT: (1) All
of the spheres are statistically the same, and an isotropic
distribution of contacts around a given sphere is assumed.
(2) A sphere at position Xj is moved a distance dui in
a time interval dt according to the macroscopic strain
rate �eij: dui � �eijXjdt (affine approximation). The
spheres are always at equilibrium due to the assumption
of isotropic distribution of contacts, and further relaxation
is not required.

In the GD calculation of the shear modulus an affine per-
turbation is first applied to the system. The shear stress
increases instantaneously (from A to B in Fig. 4b), and the
grains are out of equilibrium since the system is disordered.
The grains then relax towards equilibrium (from B to C),
and we measure the resulting change in stress from which
the modulus is calculated. To better understand the ap-
proximations involved in the EMT, suppose we repeat the
GD calculations, taking into account only the affine motion
of the grains and ignoring the subsequent relaxation. The
resulting values of the moduli are plotted in Fig. 4a as open
symbols and we see that the moduli calculated in this way
are very close to the EMT predictions. Thus, the differ-
ence between the GD and EMT results in shear lies in the
relaxation of the grains, this difference being largest when
there is no transverse force. As noted earlier, relaxation
and rearrangement of the grains violate the well-bonded
assumption which underlies EMT. By contrast, grain re-
laxation after an applied isotropic affine perturbation is not
particularly significant, and the EMT predictions for the
bulk modulus are quite accurate.

The surprisingly small value of m found as a ! 0 can
be understood as a melting of the system that occurs
when the system is close to the RCP fraction. This
fluidlike behavior (when Ct � 0) is closely related to the
melting transition seen in compressed emulsions [15] and
foams [16]. At the RCP fraction the system behaves
like a fluid with no resistance to shear. By contrast,
molecular dynamics simulations of glasses, in which
the atoms interact by purely longitudinal forces, predict
nonvanishing shear speeds [17]. The crucial difference
between these two systems is the local coordination of the
particles. In the granular system, the coordination number
near RCP (where the balls are nearly rigid) is �Z� � 6; the
system is quite tenuous. In glasses, however, the number
of neighbors is closer to 10 and the motion of each grain
is highly constrained, even for strictly longitudinal forces.

In conclusion, our GD simulations are in good agree-
ment with the available experimental data on the pressure
dependence of the elastic moduli of granular packings.
They also serve to clarify the deficiencies of EMT. Grain
relaxation after an infinitesimal affine strain transforma-
tion is an essential component of the shear (but not the
bulk) modulus. This relaxation is not taken into account
in the EMT. The failure of EMT is attributed to the fact
that grains which are initially in contact at a given pres-
sure can be separated under a shear perturbation, but they
are likely to remain in contact under a compressional or
tensional additional load. In the limit a ! 0 a packing
of nearly rigid particles responds to an external isotropic
load (compression or tension) with an elastic deformation
and a finite K [14]. By contrast, such a system cannot
support a shear load �m ! 0� without severe particle rear-
rangements: The network supporting shear stress appears
to be more tenuous than the network supporting com-
pressional loads. This may indicate a “ fragile” state of
the system [18], where interparticle forces are organized
along “force chains” (stress paths carrying most of the
forces in the system) oriented along the principal stress
axes. Such fragile networks support, elastically, only per-
turbations compatible with the structure of force chains
and deform plastically otherwise. Clearly, there is a need
for an improved EMT; recent work on stress fluctuations
in minimally connected networks [12,13] may provide an
alternative formulation and allow one to properly describe
the linear response of granular materials.
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