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We present a superfluid hydrodynamic model for the increase in moment of inertia, DI, of molecules
rotating in liquid 4He. The static inhomogeneous He density around each molecule (calculated using
the Orsay-Paris liquid 4He density functional) is assumed to adiabatically follow the rotation of the
molecule. We find that the DI values created by the viscousless and irrotational flow are in good
agreement with the observed increases for several molecules [OCS, �HCN�2, HCCCN, and HCCCH3].
For HCN and HCCH, our model substantially overestimates DI. This is likely to result from a (partial)
breakdown of the adiabatic following approximation.

PACS numbers: 67.40.Yv, 33.20.Sn, 67.40.Bz, 67.40.Hf
The spectroscopy of atoms and molecules dissolved
in He nanodroplets provides both a new way to study
microscopic dynamics of this unique quantum fluid [1] and
a very cold matrix (0.4 K [2]) to create and study novel
species [3–5]. Recent experiments have demonstrated that
even heavy and anisotropic molecules display rotationally
resolved vibrational spectra with a structure reflecting
the gas phase symmetry of the molecule. However, the
rotational constants required to reproduce the spectra are
often substantially reduced from those of the isolated
molecule. For example, the n3 vibrational band of SF6
dissolved in He nanodroplets (first observed by Goyal
et al. [6] and later rotationally resolved and analyzed by
Hartmann et al. [2,7]) indicates that the effective moment
of inertia, Ieff, in liquid 4He is 2.8 times that of the
isolated molecule. The same qualitative behavior has been
found for a wide range of other molecules [1,8,9]. In an
elegant recent experiment, it has been demonstrated that
the rotational structure of OCS broadens and collapses
in pure 3He droplets, and is recovered when �60 4He
atoms are codissolved in the 3He [1]. The association
of the weakly damped, unhindered rotation with the Bose
symmetry of 4He suggests that this phenomenon is a
manifestation of superfluidity, and the experiment has been
called the microscopic Andronikashvili experiment [1].

A theory able to reproduce the observed increase, DI ,
in molecular moments of inertia would be of interest for
at least two reasons. First, the enhanced inertia provides
a window into the dynamics of the liquid. Second, the
ability to predict the rotational constants would further im-
prove the utility of He nanodroplet isolation spectroscopy
for the characterization of novel chemical species.

The first model proposed to explain the observed DI
assumed that a certain number of He atoms, trapped in the
interaction potential of the solute, rotate rigidly with the
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latter [2]. In the case of SF6, 8 He atoms trapped in the
octahedral global potential minima would create a rigidly
rotating “supermolecule” that would have approximately
the observed Ieff. In the case of OCS, putting a six He
atom “donut” in the potential well around the molecule
also reproduces the observed Ieff [10]. Recent diffusion
Monte Carlo (DMC) calculations [11] have predicted that
the effective rotational constant of SF6-HeN monotonically
decreases from that of the isolated molecule to the large
cluster limit, reached at N � 8, and remains essentially
constant for N � 8–20. The supermolecule model has
been recently extended to consider the rigid rotation of a
“normal fluid fraction” of the He density which is claimed
to be significant only in the first solvation layer [1,10],
based on path integral Monte Carlo calculations of Kwon
et al. [12] which show a molecule-induced reduction of the
superfluid fraction. These calculations have been recently
used to propose a definition of a spatially dependent
normal fluid fraction which reproduces the observed Ieff
of solvated SF6 [13].

The limitations of the supermolecule model are made
clear by the DI observed for HCN in He droplets [8(a)]
which is only �5% of the DI observed upon formation of a
gas phase He?HCN van der Waals complex [14]. Further-
more, it has been previously recognized that in principle
there is also a superfluid hydrodynamic contribution, Ih,
to DI [1,15,16]. Previous estimates, based upon a clas-
sic treatment of the rotation of an ellipsoid in a fluid of
uniform density, found that Ih is only a small fraction of
the observed DI , at least for heavy rotors such as OCS
[10,16]. In this Letter, we show that if the spatial variation
of the He solvation density around the solute molecule is
taken into account, the calculated Ih is instead rather large
and agrees well with experimental data. We compare our
calculations with the experimental results available in the
© 1999 The American Physical Society
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literature (OCS [1], HCN [8(a)]) and with results recently
obtained in our laboratory for HCCCH3 and HCCCN, and
in the laboratory of Miller for �HCN�2 [8(b)] and HCCH
[8(c)].

We first calculate the ground state He number density,
r, around a static solute molecule. The molecule is then
considered to undergo classical rotation, slowly enough
that the helium ground state density adiabatically follows
the molecular rotation. The kinetic energy associated with
the He flow (assumed viscousless and irrotational) is used
to calculate Ih.

The main input of our hydrodynamic model is the
ground state density of He around the solute. DMC cal-
culations can provide this density with a minimum of
assumptions beyond the interaction potentials [17], but
are computationally expensive. The density functional
method, which is a good compromise between accuracy
and computational cost, consists in numerically minimiz-
ing the total energy of the many-body system in the form
of a semiempirical functional of the He density: E �R

dr H �r�r��. The energy density H contains an ef-
fective nonlocal interaction with a few parameters fixed to
reproduce known properties of bulk liquid He. The func-
tional used here is the one termed Orsay-Paris [18], which
was shown to accurately reproduce the static properties of
pure and doped He clusters [19]. The need to treat axi-
ally symmetric molecules implies moving from one- to
two-dimensional equations. The new routines have been
extensively tested against previously calculated spherically
symmetric systems. The minimization of energy is carried
out by mapping the density distribution on a grid of points
and propagating it in imaginary time, starting from a trial
distribution.

The density functional also contains the interaction
between the He and the impurity molecule. The interac-
tion, assumed pairwise, is treated as a static external po-
tential, since the molecules considered here are expected
to have negligible zero point motion. Existing potentials
for He-HCN [20], He-HCCH [21], and He-OCS [22] have
been used without modifications. The He-�HCN�2 poten-
tial was generated as the superposition of the potential due
to two HCN molecules whose centers of mass are sepa-
rated by 4.44 Å (the equilibrium distance for the gas phase
dimer [23]). The repulsive part of the He-HCCCN poten-
tial has been taken from [24], and the attractive part from
the He-HCN and He-HCCH potentials, using the concepts
of distributed interaction and transferability [25]. The He-
HCCH [21] and He-CH4 [26] interactions were used to
generate the potential between He and HCCCH3, treating
the latter molecule as cylindrically symmetric. Full detail
on all potentials used are available from the authors, and
will be published separately [27].

Once the helium density profiles are calculated, the
molecules are assumed to rotate perpendicularly to their
symmetry axis with angular velocity v. We assume that
the He density adiabatically follows this rotation, which
allows us to calculate the laboratory-frame time-dependent
density at each point in the liquid. This assumption is
valid only if at each point the velocity of the fluid, y�r�,
is less than a critical velocity, yc. If yc is taken to be the
velocity of sound, this is true for all our molecules, at the
temperature of the droplet, 0.4 K. A further justification
to our assumption is also the fact that no critical value of
angular momentum is experimentally observed for a wide
class of molecules (i.e., for a wide range of fluid velocities).

The second assumption that we make is that the He
behaves entirely as a superfluid undergoing irrotational
flow. The assumption that the motion is irrotational
implies that v�r� can be written as the gradient of a
scalar potential: v � 2===f (the dependence of r, v , f
on r will be implicit from now on), where f is known
as the velocity potential. These assumptions lead to the
following hydrodynamic equation for the velocity po-
tential [28]:

=== ? �r===f� �
≠r

≠t
� �===r� ? �v 3 r� . (1)

The first equality is just the continuity equation, while
the second reflects the statement that the density is time
independent in the rotating frame. We select our axis
system with z along the symmetry axis of the molecule,
and assume that rotation takes place round the x axis with
angular velocity v � vx̂. In order to better exploit the
symmetry of the problem, we have used elliptical coordi-
nates j, u, w, where x � f

p
j2 2 1 sin�u� cos�w�, y �

f
p

j2 2 1 sin�u� sin�w�, and z � fj cos�u�. The sur-
faces of constant j are ellipses of rotation with foci at
z � 6f. Two such surfaces limit the region where
Eq. (1) is solved. The inner boundary excludes the vol-
ume occupied by the impurity, and is chosen as the largest
ellipse contained in the region where r , 0.005r0 (r0 �
0.0218 Å23 is the bulk liquid density). von Neumann
boundary conditions, n̂ ? ===f � 2n̂ ? �v 3 r�, ensure
that the normal component of velocity matches the normal
component of motion of the boundary [28]. For the outer
boundary, any ellipse large enough that the motion of the
outside fluid is negligible can be chosen (with Dirichlet
boundary conditions f � 0). These boundary conditions
result in a unique solution to the hydrodynamic equations.
Other solutions exist if we do not require the fluid to be
irrotational, but it is known that these are higher in energy
[29], and will include any solutions that have some portion
(a “normal component” or a He “snowball”) of the He
density that rigidly rotates with the molecule.

Given the solution, f, to the hydrodynamic equation,
we can calculate the kinetic energy, Kh, in the motion of
the fluid by the following:

Kh �
1
2

Ihv2 �
1
2

mHe

Z
r�===f� ? �===f� dV , (2)

Kh �
1
2

mHe

∑
2

Z
f

µ
≠r

≠t

∂
dV 1

Z
rf�===f� ? dS

∏
.

(3)
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Equation (2) follows directly from the definition of kinetic
energy; Eq. (3) is derived from Eq. (2) using standard vec-
tor identities and assuming that f is a solution of Eq. (1).
Ih is the hydrodynamic contribution to the moment of in-
ertia for rotation about the x axis, and mHe is the atomic
mass of helium. Both �≠r�≠t� and f are proportional to
v; thus the above definition of Ih is independent of v.
The total kinetic energy of rotation will include the con-
tribution from the molecule, Km �

1
2 Imv2, where Im is

the moment of inertia of the free molecule. We can also
calculate the net angular momentum created by the motion
of the He fluid: Jh � mHe

R
rr 3 �2===f� dV . By use of

standard vector identities and Eq. (1), this definition can
be shown to lead to Jh � 2Ihv. The hydrodynamic mo-
tion of the superfluid leads to a backflow, generating a net
angular momentum in the fluid in the opposite direction to
that of the rotating body. The local shape of the veloc-
ity field v�r� can be rather complex due to the presence of
strong inhomogeneities in the density distribution.

We calculate Ih by solving the hydrodynamic equation,
Eq. (1) for f, assuming unit angular velocity rotation
around the x axis. It is computationally convenient to
solve a slightly transformed version of Eq. (1), where the
smoother function lnr�r� appears instead of r�r�:

=2f 1 �=== lnr� ? �===f 2 x̂ 3 r� � 0 . (4)

Equation (4) is solved, subject to the boundary conditions,
by converting it to a set of finite difference equations on a
grid of points in our elliptical coordinate system and using
the Gauss-Seidel relaxation method [30]. Both Eqs. (2)
and (3) are then evaluated by simple numerical quadrature,
and are found to give the same value of Ih within a few
percent. We also carefully tested the convergence of Ih
with grid size.

As an example of density distribution and velocity field,
Fig. 1 shows our results for the OCS molecule in a clus-
ter of 300 He atoms. On the left we give the contour plot
of the He density near the molecule. One clearly sees the
complex structure which results from the tendency to have
He atoms near local minima of the impurity-He potential.
The highest peak, at � y, z� � �23.6, 21.2�, corresponds
to a ring of atoms perpendicular to the axis of the mole-
cule. The integral of the density within this structure gives
6.5 atoms, and indeed 7–8 is the number of He atoms one
expects to fit into such a ring by close packing. On the
right side of the same figure we plot the current density,
rv . We find that most of the kinetic energy density, 1

2 rv2,
comes from the first solvation layer, the outer part of the
cluster giving a negligible effect.

In Table I our results are compared with existing experi-
mental values for several molecules in He nanodroplets.
There is an overall good agreement between the predicted
and observed enhancements of the effective moment of in-
ertia. From a quantitative viewpoint, one notices that the
predicted moments of inertia tend to overestimate the ex-
perimental values. In the case of the lightest rotors (HCN
and HCCH) the large discrepancy suggests the breakdown
5060
FIG. 1. He density, r (left), and He current density, rv
(right), distributions for a cluster of 300 He atoms, with
OCS in its center rotating counterclockwise. For the sake of
showing details, the highest He density peaks have been clipped
(white areas), and the dynamic range of the current has been
compressed.

of the assumption of adiabatic following as recently pre-
dicted [11]. In that paper the importance of He exchange
is pointed out; it is also shown that the interplay of the rota-
tional constant with the potential anisotropy determines the
extent to which the anisotropic He solvation density can
adiabatically follow the rotation of the molecule. When
the rotational constant of SF6 is arbitrarily increased in
the calculation by a factor of 10, the He density in the
molecule-fixed frame becomes much more isotropic and
the solvation-induced DI decreases by a factor of 20 [11].
We have recently obtained experimental evidence that DI
is larger for DCN than for HCN, which we believe to be
direct experimental evidence for this effect [9]. It is in-
teresting to note that for these light (i.e., fast spinning) ro-
tors the maximum of v�r� approaches the bulk 4He sound
velocity.

The overestimate of the moments of inertia for the other
molecules likely reflects the uncertainties in the calculated
r�r�. We note here that while, by construction, the

TABLE I. Moments of inertia for the molecules studied in
this work. Units are u ? Å2. The quantities Im and Ieff are
the observed moments of inertia when the molecule is free and
dissolved in the cluster, respectively. Their difference, DI, in
the fourth column is compared with the hydrodynamic moment
of inertia, Ih, of the present calculation.

Im Ieff (expt.) DI Ih (calc.) Ref.

HCN 11.39 14.04 2.65 5.4 [8(a)]
DCN 14.0 16.9 2.9 5.4 [9]
HCCH 14.26 16.08 1.82 6.6 [8(c)]
HCCCH3 59.14 224.0 164.8 210 [9]
OCS 83.10 230.0 146.9 190 [1]
HCCCN 111.1 330.7 219.6 220 [9]
�HCN�2 289.5 872.5 583 550 [8(b)]
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Orsay-Paris functional prevents r̄ (the density averaged
over an atomic volume) from becoming much larger than
r0, the functional was not constructed to deal with density
gradients as high as those found in the first solvation layer.
We observed that small changes in the form of the He
density within the deep potential well of those molecules
produce significant variations of the predicted moments of
inertia, limiting the accuracy of the final results to 20%–
30%. This uncertainty does not affect the main result
emerging from Table I that the hydrodynamic contribution
to the moment of inertia of these systems, instead of being
negligible, is rather large and can explain the observed
rotational constants.

One could object that the density values found at the
minima of the He-molecule interaction potential (e.g.,
�11 r0 for OCS) are too high to be treated as those
of a liquid, and should be interpreted as localized He
atoms rigidly rotating with the molecule; it has been
proposed that the He density distribution around the OCS-
He6 supermolecule is only weakly anisotropic and thus
can rotate without generating a significant hydrodynamic
contribution [10]. We have calculated the above density
distribution, and found that it is still strongly anisotropic,
leading to a hydrodynamic moment of inertia of over
400 u ? Å2. When combined with the moment of inertia
of the OCS-He6 supermolecule, this gives a total effective
moment of inertia of over 650 u ? Å2, dramatically larger
than the experimental value (230 u ? Å2).

In summary, the spatial dependence of the He density,
which is caused by the molecule-He interaction, results in a
hydrodynamic contribution to the moment of inertia more
than an order of magnitude larger (in the case of the heavier
rotors) than that predicted for the rotation of a reasonably
sized ellipsoid in He of uniform bulk liquid density. Fur-
thermore, the present calculations suggest that the effec-
tive moments of inertia of molecules in He nanodroplets
(and likely also bulk He) can be quantitatively predicted
by assuming irrotational flow of a spatially inhomogeneous
superfluid.
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Note added.—For an alternative point of view see
Babichenko and Kagan [31].

[1] S. Grebenev, J. P. Toennies, and A. F. Vilesov, Science
279, 2083 (1998).
[2] M. Hartmann, R. E. Miller, J. P. Toennies, and A. Vilesov,
Phys. Rev. Lett. 75, 1566 (1995).

[3] J. Higgins et al., Science 273, 629 (1996).
[4] K. K. Lehmann and G. Scoles, Science 279, 2065 (1998).
[5] K. Nauta and R. E. Miller, Science 283, 1895 (1999).
[6] S. Goyal, D. L. Schutt, and G. Scoles, Phys. Rev. Lett. 69,

933 (1992).
[7] R. Fröchtenicht, J. P. Toennies, and A. F. Vilesov, Chem.

Phys. Lett. 229, 1 (1994).
[8] (a) K. Nauta and R. E. Miller, Phys. Rev. Lett. 82, 4480

(1999); (b) J. Chem. Phys. 111, 3426 (1999); (c) (private
communication).

[9] A. Conjusteau et al. (to be published).
[10] S. Grebenev et al. (to be published).
[11] E. Lee, D. Farrelly, and K. B. Whaley, Phys. Rev. Lett.

83, 3812 (1999).
[12] Y. Kwon, D. M. Ceperley, and K. B. Whaley, J. Chem.

Phys. 104, 2341 (1996).
[13] Y. Kwon and K. B. Whaley, Phys. Rev. Lett. 83, 4108

(1999).
[14] S. Drucker, F. M. Tao, and W. Klemperer, J. Phys. Chem.

99, 2646 (1995).
[15] K. B. Whaley, Advances in Molecular Vibrations and

Collision Dynamics, edited by J. M. Bowman and
Z. Bacic (JAI Press, Greenwich, CT, 1998), p. 397.

[16] K. K. Lehmann, Mol. Phys. 97, 645 (1999).
[17] R. N. Barnett and K. B. Whaley, J. Chem. Phys. 99, 9730

(1990).
[18] J. Dupont-Roc, M. Himbert, N. Pavloff, and J. Treiner,

J. Low Temp. Phys. 81, 31 (1990).
[19] F. Dalfovo, Z. Phys. D 29, 61 (1994).
[20] K. M. Atkins and J. M. Hutson, J. Chem. Phys. 105, 440

(1996).
[21] R. Moszynsky, P. E. S. Wormer, and A. van der Avoird,

J. Chem. Phys. 102, 8385 (1995).
[22] K. Higgins and W. Klemperer, J. Chem. Phys. 110, 1383

(1999).
[23] K. W. Jucks and R. E. Miller, J. Chem. Phys. 88, 6059

(1988).
[24] E. M. Cabaleiro-Lago and M. A. Rı́os, J. Chem. Phys. 109,

8398 (1998).
[25] R. J. Bemish, R. E. Miller, X. Yang, and G. Scoles,

J. Chem. Phys. 105, 10 171 (1996).
[26] U. Buck et al., Mol. Phys. 55, 1255 (1985).
[27] C. Callegari et al. (to be published).
[28] L. M. Milne-Thomson, Theoretical Hydrodynamics

(Dover Publications, Inc., Mineola, NY, 1996), 5th ed.
[29] Kelvin’s minimum energy theorem. The proof in [28] is

easily extended to the nonuniform density case.
[30] Numerical Recipes (Cambridge University Press, Cam-

bridge, 1992), 2nd ed., Chap. 19.
[31] V. S. Babichenko and Yu. Kagan, Phys. Rev. Lett. 83,

3458 (1999).
5061


