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Observing Correlated Production of Defects and Antidefects in Liquid Crystals
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We present observations of strength-one defects and antidefects formed in isotropic-nematic phase
transition of a thin layer of nematic liquid crystals, using optical microscopy. We measure the widths of
the distributions of net winding number in small regions, and determine the exponent characterizing the
correlation between defects and antidefects to be 0.26 6 0.11, in very good agreement with the value
1�4 predicted by the Kibble mechanism for defect production. We also describe a novel technique to
determine the director distribution in observations of defect networks.

PACS numbers: 61.30.Jf, 64.70.Md
The study of topological defects is a highly interdis-
ciplinary area in physics. This has led to a valuable in-
terplay of ideas from different branches of physics. For
example, the first theory of formation of topological de-
fects, formulated by Kibble [1] in the context of the
early Universe, found experimental verification of some
of its aspects in certain condensed matter systems [2–
5], namely, the prediction of average defect density; see
Refs. [3,4]. In this paper, we present an experimental de-
termination of correlation between defects and antidefects.
This leads to direct verification of a prediction of the Kib-
ble mechanism, which is qualitatively different from the
other prediction of defect density. Our results are impor-
tant as they present first (to our knowledge) experimental
measurement of defect-antidefect correlations.

In the Kibble mechanism, defects form due to a domain
structure arising in a phase transition. For example, in
a spontaneous symmetry breaking transition of a U(1)
symmetry, with the order parameter being an angle u lying
between 0 and 2p , the order parameter space is a circle
S1. The domains are characterized by roughly uniform u

which varies randomly from one domain to another (and
varies with least gradient in between adjacent domains).
Here one gets string defects with nonzero winding of
u around the string. By considering the probability of
getting a winding around a junction of three domains,
it is easy to show [3] that the probability of vortex
formation per domain, in two space dimensions, is equal
to 1�4. Consider now a vortex formed at the junction
of three domains. Then the probability of formation of
an antivortex in the neighboring region increases since
part of the (anti)winding of u is already present, and one
needs only to have right u value, say, in a fourth, adjacent
domain. This conclusion, about certain correlation in the
formation of a defect and an antidefect, is valid for other
types of defects as well [6]. To see this effect [7] let
us consider a two-dimensional region V whose area is
A and whose perimeter L goes through L�j number of
elementary domains (where j is the domain size). As
u varies randomly from one domain to another, one is
essentially dealing with a random walk problem with the
average step size for u being p�2 (the largest step is p and
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the smallest is zero). Thus, the net winding number of u

around L will be distributed about zero with a typical width

given by s �
1
4

q
L
j , implying that s ~ A1�4. Assuming

roughly uniform defect density, we get s ~ N1�4 (where
N is the total number of defects in the region V), which
reflects the correlation in the production of defects and
antidefects. In the absence of any correlations, the net
defect number will not be as suppressed, and will follow
Poisson distribution with s �

p
N . In general one may

write the following scaling relation for s:

s � CNn . (1)

The exponent n will be 1�2 for the uncorrelated case.
As we show below, our experimental results give n �
0.26 6 0.11 which is in very good agreement with the
predicted value of 1�4 from the Kibble mechanism, and
reflects the correlated nature of defects and antidefects.
To get C as predicted by the Kibble mechanism, we take
the elementary domains to be equilateral triangles. Let
us also assume, for simplicity, that the two-dimensional
region V under observation is a square with area A �
�L�4�2. With the probability of defect formation per
domain being 1�4, we get N � L2��16

p
3 j2�. With s �

1
4

q
L
j , one can rewrite s as s � �31�8�2�N1�4 giving C �

31�8�2 � 0.57. If the elementary domains are squares,
then we get C � 0.71. (One may have domains of
various shapes and sizes in a local region. It is not known
what should be the correct distribution of domains for the
Kibble mechanism. Thus, as usual, we simply take all
domains to be roughly similar.)

For uniaxial nematic liquid crystals (NLC) the orienta-
tion of the order parameter in the nematic phase is given
by a unit vector (with identical opposite directions) called
the director. The order parameter space is RP2�� S2�Z2�,
which allows for string defects with strength 1�2 wind-
ings. Because of birefringence of NLC, when the liquid
crystal sample is placed between crossed polarizers, then
regions where the director is either parallel or perpendicu-
lar to the electric field �E, the polarization is maintained
resulting in a dark brush. At other regions, the polari-
zation changes through the sample, resulting in a bright
© 1999 The American Physical Society
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region. This implies that for a defect of strength s,
one will observe 4s dark brushes [8]. If the cross-
polarizer setup is rotated, then brushes will rotate in the
same (opposite) direction for positive (negative) windings.
Equivalently, if the sample is rotated between fixed
crossed polarizers, then brushes do not rotate for 11
winding while they rotate in the same direction (with
twice the angle of rotation of the sample) for 21 wind-
ing. We use this method to determine the windings.

We now describe our experiment. We observed
isotropic-nematic (IN) transition in a tiny droplet (size
�2 3 mm) of NLC 40-Pentyl-4-biphenyl-carbonitrile
(98% pure, purchased from Aldrich Chem.). The sample
was placed on a clean, untreated glass slide and was heated
using an ordinary lamp. The IN transition temperature
is about 35.3 ±C. Our setup allowed the possibility of
slow heating, and cooling, by changing the distance of
the lamp from the sample. (This part was the same as
in Ref. [3].) We observed the defect production very
close to the transition temperature (in some cases we
had some isotropic bubbles coexisting with the nematic
layer containing defects). For the observations, we used
a Leica, DMRM microscope with 203 objective, a CCD
camera, and a cross-polarizer setup, at the Institute of
Physics, Bhubaneswar. Phase transition process was
recorded on a standard videocassette recorder. The im-
ages were photographed directly from a television monitor
by replaying the cassette.

The IN transition is of first order. When the transition
proceeds via nucleation of bubbles, we observe long
horizontal strings which are not suitable for our analysis.
We selected those events where the transition seems
to occur uniformly in a thin layer near the top of the
droplet (possibly due to faster cooling from contact with
air). The depth of field of our microscope was about
20 mm. All the defects in the field of view were well
focused, suggesting that they formed in a thin layer,
especially since typical interdefect separation was about
10 40 mm. (For us, the only thing relevant is that
the layer be effectively two dimensional over distances
of order of typical interdefect separation.) Also, the
transition happened over the entire observation region
roughly uniformly, suggesting that a process like spinodal
decomposition [9] may have been responsible for the
transition. This resulted in a distribution of strength-one
defects as shown in the photographs in Fig. 1. Points
from which four dark brushes emanate correspond to
defects of strength 61. Because of resolution limitation
the crossings here do not appear as pointlike. It is
practically impossible to use the technique of rotation of
brushes to identify every winding in situations such as
shown in Fig. 1 due to very small interdefect separation
(resulting from high defect density), as well as due to
extremely rapid evolution of the defect distribution.

We have developed a particular technique for determin-
ing individual windings of defects in situations like Fig. 1
where one needs only to determine the winding of one of
FIG. 1. Picture of defect distribution observed using crossed
polarizers in IN transition. Size of the image is about
0.27 mm 3 0.24 mm.

the defects by rotation in a cross polarizer setup. Wind-
ings of the rest of the defects can then be determined using
topological arguments, as we explain below. Figure 2b
shows the situation where the sample is rotated in a clock-
wise manner, compared to Fig. 2a (as shown by the defect
patterns). We first determine the winding of one of the
defects, marked by a “�” in Fig. 2a. By noting the rota-
tion of brushes in Fig. 2b, we determine that it is a defect
(y, marked by arrow) with 11 winding (as the brushes
do not rotate for this defect; note that here we are rotat-
ing the sample). Now, one of the brushes emanating from
this defect is assumed to correspond to the director being
parallel to �E with u assumed to be zero. Winding � 11
then implies that the next brush, going clockwise around
the defect, should correspond to u � 3p�2 with the di-
rector perpendicular to �E. The next two brushes will then
correspond to u � p and p�2, respectively. We now
denote the quadrant on the circle S1, between u � 0 to

FIG. 2. Verification of the procedure for identifying the
windings of defects. Size of each image is about 0.3 mm 3
0.3 mm.
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3p�2 by number 1, the quadrant, between u � 3p�2 to
p by number 2, and similarly, the other two quadrants
(going clockwise) by numbers 3 and 4. This allows us to
write numbers 1 to 4 in between the brushes.

Using continuity of the order parameter outside the
location of defects, one can easily see that u in between
any two brushes remains in the same quadrant irrespective
of the size and the shape of that region, as a change
of quadrant should happen only across a dark brush.
Around any defect, if we know the quadrant numbering
of any two adjacent regions between the brushes, then
the quadrant numbers for the remaining two regions are
assigned assuming the same sense for the winding as
determined by the first two quadrant numbers. (This is
when the crossing corresponds to a defect. Occasionally
there are situations where one is not able to resolve whether
two brushes are just very close or there is a crossing
there. In such cases, if a wrong choice is made, then one
finds a conflict in quadrant assignment when approaching
from different directions.) Using these simple rules, we
complete the quadrant assignment in the picture in Fig. 2b,
and determine windings of all defects. As defects are
far separated here, one can also determine their windings
by noticing rotation of the brushes directly. The results
are in complete agreement with the windings determined
using our technique of quadrant assignment. This is not
surprising as the arguments given above for the technique
use only continuity properties of the director, and hence
are topological in nature, independent of the details of the
defect network.

Note that whenever two defects are joined by two (or
more) brushes, they represent defect-antidefect pairs. (It
is easy to see that in between two defects of the same
windings there must be a region belonging to the same
quadrant extending to infinity, unless truncated by other
defects [10].) Figures 1 and 2 show that defect-antidefect
pairs are most abundant, supporting the correlation in
defect-antidefect production. Pictures like those in Fig. 2
are present in the literature [8] (though we have not seen
pictures as in Fig. 1 with very dense network of defects).
However, in some of those cases, one also observes few
strength-1�2 defects, i.e., points from which only two
brushes emanate. We do not get any of these. If we had
missed any such points due to resolution of the picture, it
would have led to conflict in the director assignment on
the two sides of the brush following our technique, as we
have verified from the pictures in the literature. A pos-
sible explanation for the absence of 1�2 defects could
have been that these are point monopole defects. How-
ever, it is known that monopole production in this man-
ner is highly suppressed [11]. Further, similar pictures in
the literature [8] show some strength-1�2 defects as well,
which is not possible if these are monopoles. We propose
the following explanation for this. The anchoring of the
director at the IN interface [12] forces the director to lie
on a cone, with the half angle equal to about 64±. This
forces the order parameter space there to become effec-
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tively a circle S1, instead of being RP2, with the order
parameter being an angle between 0 and 2p. Only de-
fects allowed now are with integer windings. Of course,
depending on the anchoring energy, strength–1�2 defects
could still form, with a certain region having higher en-
ergy. Further, the space here is effectively two dimen-
sional since integer windings can be trivialized as one
moves away from the IN interface, towards the nematic-
air interface with the normal boundary condition. (In this
sense, these defects may be like partial monopole config-
urations.) Therefore the prediction for s from the Kibble
mechanism for the U(1) case, as described above, is valid
for this case, with the picture that a domain structure near
the IN interface is responsible for the formation of integer
windings.

After identifying the windings of all defects (wherever
possible) in a picture, we first determine the average defect
density, and then divide the picture in terms of square
shaped regions (V) containing N defects on average. We
do the analysis for three different values of N , N � 10, 20,
and 30. Regions are marked without noticing the presence
of defects to avoid any bias. In order to increase statistics,
we also included some square regions with partial overlap
(making sure that the boundaries of the two regions, though
intersecting, should not overlap). It should be clear that
net windings along the perimeters of such squares also
represent independent statistics. For each square region,
net defect number Dn (i.e., number of defects minus
number of antidefects) was found and by analyzing a large
number of pictures, the frequency f�Dn� for each value of
Dn was determined. Figure 3 shows the plots of f�Dn�
vs Dn. Solid, dotted, and dashed curves show Gaussian
fits to the experimental points corresponding to N � 10,
20, and 30, respectively. The number of regions analyzed
for these cases was 91, 54, and 34 in that order. Table I
summarizes our results for the Gaussian fits for the three
sets of data, where we give the best fit values of the
parameters of the Gaussian, along with the standard errors
in the determination of these parameters from the fit.

For square shaped elementary domains, predicted val-
ues of s are 1.26, 1.50, and 1.66, for N � 10, 20, and 30,
respectively, which are in reasonable agreement with the
measured values given in Table I. (For triangular domains,
predicted values are lower, with s � 1.01, 1.21, and 1.33
for the three values of N .) If defects and antidefects were
uncorrelated then we expect, by randomly distributing de-
fects and antidefects in the region, that s � 3.15, 4.47, and
5.50, for N � 10, 20, and 30, respectively. These values
are markedly different from the values experimentally ob-
served. Note that if defect-antidefect pairs were thermally

TABLE I. Results of fitting data to f�Dn� � ae2�Dn2Dn�2�2s2
.

N a Dn s

10 26.37 6 1.15 0.06 6 0.07 1.41 6 0.07
20 13.54 6 1.12 20.17 6 0.16 1.64 6 0.16
30 7.21 6 0.78 0.44 6 0.24 1.94 6 0.25
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FIG. 3. Plots of the frequency f�Dn� vs Dn.

produced, then any resulting correlation could be observed
only for typical interdefect separations of order of the core
size of the defect (� few hundred angstroms). The inter-
defect separations we observe (at the time of formation it-
self) are of the order of 10 40 mm. We mention here that
sometimes we observe defects after the network has un-
dergone some evolution. However, it does not affect cor-
relations between defects and antidefects produced via the
kibble mechanism (as long as kinetic energies of defects
are not too large, which certainly is the case here). Defect-
antidefect symmetry implies that the Gaussians should be
centered at zero. As we see from Table I, centers of Gaus-
sians Dn are indeed consistent with zero.

Given the values of s for different N, we can determine
the exponent n in Eq. (1). The stars in Fig. 4 denote
experimental values of ln�s� vs ln�N� for the three values
of N. The straight line shows the best linear fit to these
points. The slope of the line gives the value of the
exponent n. We find

n � 0.26 6 0.11 . (2)

This value is in excellent agreement with the theoretical
value of 1�4 predicted by the Kibble mechanism. Though

FIG. 4. Determination of the exponent n.
the error is somewhat large, it still rules out zero correla-
tion between defects and antidefects which would give the
value of the exponent to be 1�2. The intercept of the line
in Fig. 4 is found to be 20.27 6 0.27. This gives the
value of the prefactor in Eq. (1) to be C � 0.76 6 0.21.
Again, this value is in good agreement with the predicted
value of C � 0.71 from the Kibble mechanism for the
case of square shaped elementary domains, though error
is too large in this case for making any definitive state-
ment about the preferred shape of elementary domains.

We conclude by stressing that these observations pro-
vide first measurement of defect-antidefect correlations,
and lead to experimental verification of this crucial as-
pect of the Kibble mechanism. Another point is that the
prediction of defect density, via Kibble mechanism, cru-
cially requires the knowledge of the domain size [5]. In
Ref. [3], the transition proceeded by bubble nucleations,
so domains were easily identified. When domains are
not that clearly identifiable, as in the present case, then
how does one determine the process underlying the defect
production? Here, by checking a qualitatively different
aspect of the Kibble mechanism, one is able to say that
the correlations in defect-antidefect production support the
underlying picture being that of the Kibble mechanism.
We also emphasize that the technique we have described
for determining the windings of defects is an extremely
efficient one (and also fun to play with). We believe that
this technique can be very useful in determining proper-
ties of dense defect networks in liquid crystals.
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