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Time-Temperature Superposition of Structural Relaxation in a Viscous Metallic Liquid
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Bulk metallic glass-forming Pd40Ni10Cu30P20 has been investigated in its equilibrium liquid by
quasielastic neutron scattering. The quasielastic signal exhibits a structural relaxation as known
from nonmetallic viscous liquids. Even well above the melting point, the structural relaxation is
nonexponential and obeys a universal time-temperature superposition. From the mean relaxation times
average diffusivities have been determined, resulting in values on a10210 m2 s21 scale, 3 orders of
magnitude slower than in simple metallic liquids.

PACS numbers: 61.25.Mv, 61.12.–q, 61.20.Lc, 64.70.Pf
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During the past few years, new multicomponent Z
based alloys have been found which show a high stab
against crystallization in their undercooled liquid sta
when cooled below their melting point as well as wh
heated above the calorimetric glass transition tempera
[1,2]. Cooling rates as low as 1 K�s allow for the casting
of bulk metallic glass of up to 50 mm in the smalle
dimension. The stability with respect to crystallizatio
comes along with a viscosity of several Pa s at th
liquidus temperatures [3,4], which is some 3 orders
magnitude larger than in simple metallic liquids. Henc
one expects atomic motion in the liquid state to diff
from the microscopic dynamics in simple metals [5].

Recently, we investigated the fast dynamics in liqu
Zr46.8Ti8.2Cu7.5Ni10Be27.5 �V4� by inelastic neutron scat-
tering [6]. Our results compare well to the behavior
certain molecular and ionic glass-forming liquids [7], an
to predictions by the mode-coupling theory (MCT) of th
liquid-to-glass transition [8]. Within mode-coupling the
ory, a fast relaxation process on a meV scale—the f
b relaxation, which can be visualized as a rattling of t
atoms in the transient cages formed by their neighbors
prepares structurala relaxation responsible for viscou
flow. It turned out, that, indeed, there is a fastb relax-
ation in liquid Zr46.8Ti8.2Cu7.5Ni10Be27.5 and that it is in
full accord with mode-coupling theory. The dynamics
an equilibrium metallic liquid towards longer times as we
as its behavior relative to the structurala relaxation known
from nonmetallic glass-forming systems, remains an op
question.

In this Letter we report on the study of structural rela
ation in liquid Pd40Ni10Cu30P20 over a broad temperatur
range. This alloy is the best metallic glass former know
so far. A critical cooling rate of only 0.1 K�s is sufficient
to avoid crystallization and to obtain bulk metallic gla
0031-9007�99�83(24)�5027(3)$15.00
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castings of up to 72 mm in diameter [9]. Pd40Ni10Cu30P20
combines a deep eutectic composition with a liquidus te
peratureTliq at only 865 K (V4: 1050 K) with a high
glass transition temperatureTg � 578 K (V4: � 626 K).
Therefore, in contrast to simple metallic liquids and mo
alloys, relaxational dynamics in liquid Pd40Ni10Cu30P20 is
sufficiently slow to study structural relaxation in an equ
librium metallic liquid with quasielastic neutron scatterin

Common features of structurala relaxation in glass-
forming liquids are a universal temperature dependen
where correlation functions obey a time-temperature
perposition, and a stretching over a wider time range th
expected for exponential relaxation [8,10]. Experimen
data in thea relaxation regime can usually be well de
scribed by a Kohlrausch stretched exponential function

F�q, t� � fq exp�2t�tq�bq (1)

with an exponentbq , 1; tq is the relaxation time and
fq accounts for the initial decay of correlations due
phonons and a fast relaxation process.

We investigated structural relaxation in liqui
Pd40Ni10Cu30P20 on the neutron time-of-flight spec
trometer IN 6 at the Institut Laue-Langevin in Grenobl
In the setup used, an incident neutron wavelength
l � 5.1 Å21 yielded an accessible wave-number ran
at a zero energy transfer ofq � 0.3 1.5 Å21 at an
energy resolution of94 meV (FWHM). Regarding
the scattering cross sections of the individual elemen
Pd40Ni10Cu30P20 is an 88% coherent scatterer. Howeve
with the first structure factor maximum atq0 � 2.9 Å21,
our spectra are dominated by incoherent scattering, wh
in turn is dominated by the contributions from Ni wit
� 73% and Cu with� 22%.

Pd40Ni10Cu30P20 ingots were prepared from a mixtur
of pure elements, and NiP and CuP alloys by inducti
© 1999 The American Physical Society 5027
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melting in a silica tube. The melt was subject to a B2O3
flux treatment in order to improve its glass-forming ability.
Differential scanning calorimetry with a heating rate of
40 K�min resulted in a Tg at 578 K and a Tliq at 865 K
in accordance with values given in Ref. [9]. Slices with
a thickness of 1.5 mm were cut from the amorphous bulk
sample and sealed in a SiC container.

Spectra of liquid Pd40Ni10Cu30P20 were taken at five
temperatures above Tliq � 865 K ranging from 873 K to
1033 K. Additional spectra were measured in the under-
cooled liquid at 838 K without evidence of crystallization.
Measurements of the amorphous sample at 300 K gave
the instrumental resolution profile. The high flux on IN 6
allowed for relatively short measuring times of 2.5 h at
each temperature. In order to obtain the scattering law
S�q, v�, raw data were normalized to a vanadium standard,
corrected for self-absorption and container scattering, and
interpolated to constant wave numbers q. Multiple scat-
tering corrections were omitted, since the sample scatters
less than 1%. Symmetrization of S�q, v� with the detailed
balance factor, Fourier transformation, division by the in-
strumental resolution, and normalization to the t � 0 value
yielded the correlation function F�q, t� up to 10 ps.

Figure 1 shows the scattering law S�q, v� at q �
1.5 Å21 —for clarity, normalized to the value at v � 0.
Structural relaxation in liquid Pd40Ni10Cu30P20 is charac-
terized by a quasielastic signal with a remarkable small
width of some 10 meV (FWHM) at about Tliq, 2–
3 orders of magnitude smaller than in simple metallic liq-
uids at their melting points. The wings of the quasielastic
lines extend up to several 100 meV .

For a quantitative analysis we turn to the correlation
function F�q, t� obtained by Fourier deconvolution of
measured S�q, v�. Figure 2 shows F�q, t� in a semiloga-
rithmic representation from t � 0.4 up to 10 ps and at q �
1.5 Å21. For t . 1 ps, structural relaxation dominates
the spectral line shape. We note a stretching in F�q, t�.
Solid lines in Fig. 2 are fits with a Kohlrausch stretched
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FIG. 1. Scattering law S�q, v� of Pd40Ni10Cu30P20 measured
with quasielastic neutron scattering on the time-of-flight spec-
trometer IN 6. The measurement in the glass at 300 K
yields the instrumental resolution function. Structural relax-
ation causes a broadening of the elastic line on a 10 meV
scale— some 3 orders of magnitude smaller than in simple
metallic liquids at their melting points.
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exponential function [Eq. (1)] in the time range from 1 to
10 ps. Towards shorter times, F�q, t� reaches a plateau;
data are still well described by the stretched exponen-
tial function. This demonstrates that the microscopic dy-
namics are well separated from the quasielastic signal [11].

The correlation function F�q, t� can be fit using Eq. (1)
with the stretching exponent bq as a free parameter for
wave numbers ranging from 0.9 to 1.5 Å21. Although re-
sults for bq scatter between 0.70 and 0.82, no systematic
q or temperature dependence of bq is found. Figure 3(a)
displays master curves constructed with values fq and tq

obtained with a mean b � 0.76. Time-temperature su-
perposition holds over the entire temperature range, even
far above the melting point. This is in agreement with
results from quasielastic neutron scattering on the glass-
forming liquids glycerol [12] and orthoterphenyl [13].
Stretching of correlation functions is generally found to
be more pronounced in fragile glass-forming liquids, char-
acterized by a sharp temperature dependence of viscos-
ity, e.g., the van der Waals liquid orthoterphenyl with a
b � 0.5 [13]. In an intermediate system such as glyc-
erol, a b � 0.6 has been reported [12]. Hence, a stretch-
ing exponent of b � 0.76 suggests that Pd40Ni10Cu30P20
is a fairly strong glass former.

In a second fitting iteration we used an average over
all values bq�T � � b � 0.76 6 0.02, which is then kept
fixed. The resulting mean relaxation times

�tq� �
Z `

0
dt F�q, t��fq � tqb21G�b21� . (2)

are proportional to 1�q2 within 5%, as one would ex-
pect in the hydrodynamic limit for q ø q0 [14]. This
permits the determination of an average diffusivity D �
1�q2�tq� [Fig. 3(b)]. Values range from 0.44 6 0.02 3

10210 m2 s21 at 838 K to 4.9 6 0.1 3 10210 m2 s21 at
1033 K. Even 168 K above the liquidus temperature,
long-range atomic motion in liquid Pd40Ni10Cu30P20 is ap-
proximately 2 orders of magnitude slower than in simple
metallic liquids.
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FIG. 2. Normalized time correlation function F�q, t� of liq-
uid Pd40Ni10Cu30P20 obtained by Fourier deconvolution of
measured S�q, v�. Solid lines are fits with a Kohlrausch
stretched exponential function resulting in a q and temperature-
independent stretching exponent b � 0.76 6 0.02. Even far
above the liquidus temperature Tliq � 865 K, structural relax-
ation remains nonexponential.
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FIG. 3. Structural relaxation in liquid Pd40Ni10Cu30P20:
(a) Rescaling of the correlation function F�q, t� at q � 1.5 Å21

(Fig. 2) using results from fits with a stretched exponential
function and a mean b � 0.76—a time-temperature superpo-
sition holds. (b) Diffusivity D � 1�q2�tq� calculated from
the mean relaxation times. Its temperature dependence is in
accord with mode-coupling theory (dashed line) indicating a
crossover temperature at Tc � 695 6 30 K.

Mode-coupling theory is primarily concerned with
short-time dynamics around the fast b relaxation regime.
However, it also provides predictions for the tempera-
ture dependence of the a relaxation time. Within
mode-coupling theory, Tc is the temperature at which
the transport mechanism changes from glasslike hop-
ping to liquidlike motion, i.e., viscous flow. In the
idealized version of the theory, which does not account
for hopping processes, t is directly proportional to
��T 2 Tc��Tc�2g for temperatures above Tc [8]. Al-
though MCT does not make predictions of the temperature
range in which this relation holds, it allows a rough
estimate of the crossover temperature Tc. A best fit to
D�T � yields a Tc � 695 6 30 K and a g � 2.8 6 0.2.
The exponent compares to the value found in liquid
Zr46.8Ti8.2Cu7.5Ni10Be27.5 �g � 2.7� derived from the line
shape analysis of F�q, t� in the fast b relaxation regime
[6]. The MCT power law also holds for self-diffusion
coefficients obtained by molecular dynamics simulations
in binary ZrNi and ZrCu alloys [15,16].

In liquid Zr46.8Ti8.2Cu7.5Ni10Be27.5, we extrapolated a
Tc to � 1.5Tg. Unfortunately, Tc lies in the inaccessible
temperature range between crystallization and melting. In
Pd40Ni10Cu30P20, Tc �#1.3Tg� is much closer to the glass
transition, and the thermal stability against crystallization
is even greater. For this alloy system a measurement of
critical parameters around the crossover from an ergodic
to a nonergodic metallic liquid may thus be possible.

In conclusion, long-range atomic motion in liquid
Pd40Ni10Cu30P20 occurs on a 10210 m2 s21 scale, some
3 orders of magnitude slower than in simple metallic
liquids. The quasielastic signal obeys a universal time-

temperature superposition for temperatures ranging from
Tliq 2 27 K to Tliq 1 168 K. Liquid Pd40Ni10Cu30P20
exhibits a structural �a� relaxation like other nonmetallic
viscous liquids. The structural relaxation is nonexpo-
nential—it shows a stretching in time with a stretching
exponent b � 0.76 6 0.02, indicating that metallic
bulk-glass forming Pd40Ni10Cu30P20 is a fairly strong
glass-forming liquid.
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