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Turbulent Fluctuation and Transport of Passive Scalars by Random Wave Fields
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Turbulent transport of passive scalars by random wave fields is studied, with applications to statistics
of chlorophyll concentration in the ocean. The existence of the small parameter u0�c0, where u0 and
c0 are the characteristic particle velocity and wave phase speed, respectively, allows essentially exact
calculations, and as such provides a rich testing ground for quantitative comparisons between theory
and observation. General expressions are derived for the diffusion constant and mean drift velocity.
It is shown that the spectrum of passive scalar fluctuations displays at least two distinct inertial range
power laws even when the wave velocity field has only one.

PACS numbers: 47.27.Qb, 47.35.+ i, 47.55.Kf, 92.10.Lq
Passive scalar transport by turbulent velocity fields
has been a subject of intense interest for many years
[1–4]. The problem is of great importance in ocean
and atmosphere dynamics where the transport of heat,
moisture, salt, and biogeochemical quantities has short
term (weather) as well as long term (climate) implications.
Theories to date have focused mainly on the effects of
Navier-Stokes turbulence in two and three dimensions.
The velocity field is then strongly nonlinear, and analytic
solutions are restricted to approximate closure schemes,
or special model problems with Gaussian statistics [4].

In this work we study transport by traveling wave fields
[3]. It transpires that a small parameter, u0�c0, in the
problem, where u0 and c0 are the characteristic particle
and wave phase speed, respectively, allows essentially ex-
act analytic treatment via direct computation of the first
few orders in a straightforward perturbation theory. Clo-
sure schemes, e.g., are unnecessary since the additional
higher order terms they include are negligibly small. The
amazing variety of physical wave systems provide a rich
set of problems that are amenable to quantitative analy-
sis, a rare commodity in fluid dynamics. Satellite obser-
vations of different ocean surface regions then provide
unique laboratories where the theory can be tested.

Below we outline the theoretical formalism, based on
expanding the Lagrangian in terms of Eulerian dynamics,
exploiting the smallness of u0�c0. We use it to derive
an effective diffusion equation for the mean concentration
field, and also evaluate the spectrum of fluctuations about
the mean. We find that the inertial range exhibits two
distinct power-law regions even when the velocity field
has only one. The predicted spectra compare favorably
with ocean chlorophyll spectra in ocean regions whose
dynamics are dominated by wave motions.

The equation of motion for the passive scalar concen-
tration field c�x, t� by a (possibly compressible—e.g.,
acoustic waves) advecting velocity field v�x, t� is

≠tc 1 = ? �vc� � k=2c , (1)
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with microscopic (molecular) diffusion constant k.
Large-scale transport induced by v is generally many
orders of magnitude greater than that by k, and we
henceforth set k � 0. For incompressible v the nonlinear
term simplifies to v ? =c . Mean quantities are defined
via an ensemble average over v . For Navier-Stokes
turbulence these statistics are strongly non-Gaussian and
poorly understood, but for waves, which have a well
defined set of at most weakly interacting modes, one has
the representation

v�x, t� �
Z dd̂k

�2p�d̂
a�k�ê�k; z�ei�k?r2v�k�t� 1 c.c. , (2)

and Gaussian statistics, fully characterized by the ampli-
tude spectrum

�a�k�a��k0�� � f�k� �2p�d̂d�k 2 k0� , (3)

are an excellent approximation. Here c.c. stands for com-
plex conjugate, k is the wave vector, a�k� is the mode
amplitude, ê�k; z� is the mode profile, and v�k� is the dis-
persion relation [e.g., v�k� � cjkj for acoustic waves].
We have divided the full d-dimensional space (kept
general for convenience) of x � �r, z� into a d̂ # d di-
mensional “horizontal” subspace r, and a d̄ � d 2 d̂
dimensional “vertical” subspace z. For typical oceano-
graphic applications, d̂ � 2 and d̄ � 1. The form (2)
shows that the full wave-number–frequency velocity
spectrum is confined to the hypersurfaces v � 6v�k�.
The spectrum f�k� is typically peaked about some char-
acteristic wave number k0, which then defines a charac-
teristic wavelength l0 � 2p�k0 and wave period t0 �
2p�v�k0�. The width Dk of the spectrum yields a cor-
responding frequency width Dv 	 c0Dk, which define a
correlation length j � 2p�Dk and a decorrelation time
t � 2p�Dv of the wave field. Typically t, j are a few
times t0, l0. A crucial characteristic of waves is that
f�k� � 0 in some finite region about k � 0: waves of
very large wavelength and/or low frequency are never
physically excited.
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We make use of the following random walk representa-
tion for c�x, t� [5]. Let Zxs�t� be the Lagrangian trajec-
tory of a freely advected particle, constrained to be at x
at time s: ≠tZxs�t� � v���Zxs�t�, t��� with Zxs�s� � x. The
equivalent integral form is

Zxs�t� � x 1
Z t

s
ds0 v���Zxs�s0�, s0��� . (4)

A formal solution to (1) (with k � 0) is then

c�x, t� �
Z

ddx0 c�x0, s�d�x 2 Zx0s�t�� , (5)

for any t . s. The function c�x, t� is a random variable,
dependent on the history of Zxs�t�. Only if t 2 s . t is
Zx0s�t� statistically independent of c�x0, s� and does the
average of (5) factorize into the Markov-type form

c̄�x, t� �
Z

ddx0 P�x, t jx0, s�c̄�x0, s� ,

P�x, t jx0, s� � �d�x 2 Zx0s�t��� , (6)

�
Z ddK

�2p�d
eiK?�x2x0�2l�K;x0,t2s�,

where c̄ � �c�. In the last line the usual Fourier
representation of the d function has been used, K is a
full d-dimensional wave vector, l � 2 ln�e2iK?DZx0�t��,
and DZx0�t� � Zx0�t� 2 x. A transport equation for c̄

is derived by taking the time derivative of (6), bringing
down a factor r � ≠tl. Diffusion and mean drift are
large-scale phenomena that emerge on length and time
scales much larger than the j and t. To study them one
then performs a Taylor expansion of r for small jKj:

r�K; x, t� � 2
X̀
n�1

�2i�n

n!

dX
l1,l2,...,ln�1

r
�n�
l1l2...ln

�x, t�

3 Kl1Kl2 · · · Kln ,

r
�1�
l �x, t 2 s� � �yl���Zxs�t�, t���� , (7)

r
�2�
lm �x, t 2 s� � �yl���Zxs�t�, t���DZl

xs�t��c 1 �l $ m� ,

and so on. The subscript c indicates a cumulant average:
�yl� �DZm� 1 �l $ m� should be subtracted. The mul-
titime Lagrangian correlators r�n�, in fact, become time
independent for t 2 s . t. Substituting (7) into (6), us-
ing the correspondence iKl $ ≠l , one obtains a gradient
expansion for the equation of motion:

≠tc̄�x, t� �
X̀
n�1

�21�n11

n!

X
l1,...,ln

≠l1 · · · ≠ln

3
Z

ddx0 P�x, t jx0, s�c̄�x0, s�r�n�
l1...ln

�x0� .
(8)

If r�n��x� varies slowly on the scale of the dependence of
P on x 2 x0, i.e., if the statistics of v change very slowly
on the scale of j, one may factor r�n� out of the integral
5012
to obtain the local equation of motion,

≠tc̄�x, t� �
X̀
n�1

�21�n11

n!

X
l1,...,ln

≠l1 . . . ≠ln

3 �r
�n�
l1...ln

�x�c̄�x, t�� . (9)

This factorization is exact for a translation invariant sys-
tem where the r�n� are x independent. It is approximate
if d̄ . 0 since the r�n� will then depend on the vertical
coordinate z. For sufficiently smooth c̄ one may drop all
terms for n $ 3 to obtain the diffusion equation,

≠tc̄ 1 = ? �uc̄� � = ? �D ? =c̄� , (10)

with mean drift velocity and diffusion tensor,

ul�x� � r
�1�
l �x� 2

1
2

X
m

≠mr
�2�
lm �x� 1 . . .

Dlm�x� �
1
2

r
�2�
lm �x� 2

1
6

X
n

≠nr
�3�
lmn�x� 1 . . . .

(11)

Results (9)–(11) are general, not restricted to waves,
but explicit computation of the r�n� is often impossible
due to the nonlinear relation (4) between Lagrangian and
Eulerian coordinates. We show now, however, that for
wave fields a controlled calculation is possible.

Equation (4) may be iterated to obtain the following
time-ordered product Eulerian expansion:

v���Zxs�t�, t��� �
X̀
n�0

Z t

s
ds1

Z s1

s
ds2 . . .

Z sn21

s
dsn

3 �v�x, sn� ? =� �v�x, sn21� ? =� · · ·

3 �v�x, s1� ? =�v�x, t� , (12)

in which the gradient operators act on all x dependence
to their right. For waves this expansion is rapidly
convergent: v is O�u0� and varies spatially on scale
l0, hence =v � O�u0�l0�. For t 2 s � O�t�, the nth
term in (12) is then O�u0�u0t�l0�n�: if the distance u0t

traveled by a tracer particle in a decorrelation time is
much less than the wavelength l0, convergence is assured.
For t 
 t0 one has t 
 l0�c0 and hence u0t�l0 

u0�c0. Since u0 is proportional to the wave amplitude,
while c0 is independent of it, one will have u0�c0 ø 1 for
low amplitude, at most weakly nonlinear waves. Under
typical ocean conditions, one finds u0�c0 
 0.1, indeed
very small.

The expansion (12) may now be substituted into (7)
and (4), and the Gaussian averages over v performed via
Wick’s theorem. For brevity we discuss only qualitative
features. A full discussion, with applications to realistic
ocean wave models is presented in [6]. The vertical
profile of u and D may be quite complicated—depending
on multiple products of ê�k, z� [7] in (2)—but overall
amplitudes may be estimated. Since �v� � 0, one finds
u � O�u2

0�c0� ø u0. Naively one expects D � O�u2
0t�;
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however, the property f�0� � 0 suppresses this term and
one finds D � O�u2

0t�u0�c0�2� instead. For parameters
appropriate to internal waves [so-called baroclinic inertia
gravity (BIG) waves], one finds u 
 5 cm�s, and D 

104 cm2�s [6]. This value for D is insignificant on large
(.100 km) scales, but can dominate eddy turbulent values
on small (,10 km) scales, and hence may be important
for so-called subgrid modeling of ocean dynamics. On the
other hand, this value for u is comparable to some ocean
currents and could be a significant source of coherent
transport that has largely been overlooked.

We turn now to what may be the most physically
interesting aspect of wave transport: fluctuations of the
tracer concentration. We find that wave effects enter at
zeroth order in u0�c0 and can therefore be very important.
Spatial fluctuations of passive tracers, such as chlorophyll,
serve as indicators of ocean dynamics in the top 10–
20 m, traditionally thought to be dominated by 2D eddy
turbulence. In their pioneering work, Gower et al. [8]
suggested that the observed k23 power-law spectrum
of chlorophyll-a spatial fluctuations, Fig. 1, reflects the
kinetic energy spectrum, which also follows a k23 law in
the direct enstrophy cascade region of the inertial range.
This view was criticized in [9]: the tracer spectrum should
actually follow that of the enstrophy, which exhibits a k21

behavior. Observations in other areas of the ocean, Fig. 2,
confirm this. The results in Fig. 1 therefore remained
unexplained.

We now show that Fig. 1 can be explained by waves.
In many regions, including high latitudes studied in [8],
the relative level of eddy turbulence may be low, and the
dynamics may be BIG wave dominated. Analyses of sea
surface height (SSH) variations [10] confirm this. The
insets of Figs. 1 and 2 illustrate the difference for two
regions with, respectively, low and high levels of eddy
turbulence. We now derive wave tracer spectra and show
consistency with Fig. 1.

For simplicity, we consider an effective 2D compress-
ible model (d̂ � 2, d̄ � 0) of the ocean near surface
[11]. Let an initially waveless fluid have concentration
field c0�r� and autocorrelation function R0�r 2 r0� �
�c0�r�c0�r0��av , in which �?�av denotes an ensemble av-
erage determined by transport processes excluding wave-
induced motions. We use c0 as an initial condition in (1),
and compute

R�r 2 r0� � ��c�r, t�c�r0, t��av � , (13)
which is time independent for t ø t ø td , where td is
the time scale on which diffusion and drift strongly alter
c: we consider the short-term effects of the wave pattern
on the concentration field which act before significant
large-scale transport takes place. Using the formalism
above one obtains

R�r� �
Z

ddr 0 K �r, r0�R0�r0� ,

K�r, r0� �
Z ddk

�2p�d
eik?�r2r0�2s�k;r0�,

(14)
FIG. 1. Power spectrum of chlorophyll-a fluctuations in an
180 km 3 250 km ocean area south of Iceland, as reported
in [8] based on analysis of the Landsat multispectral imagery
(reproduced courtesy of the authors). Triangles: experimental
data. Dashed line: least squares k22.92 power-law fit. Inset:
Power spectra of sea surface height fluctuations in this
same region, based on the analysis of Topex�Poseidon ocean
altimeter measurements described in [10]. Solid curve: Slow
component of the SSH fluctuations associated with the vortical
motions. Dashed curve: Fast component caused by the gravity-
wave motions.

in which s�k; r 2 r0� � 2 ln�e2ik?�DZr0�t�2DZr00�t���. The
latter may be computed perturbatively using (12). How-
ever, for short-term effects, only the zeroth order result
DZr0�t� �

Rt
0 ds v�x, s� is required. One obtains then

s�k, r� � 1
2

P
i,j�Gij�r� 1 Gji�r��kikj , with

Gij�r� � 2
Z `

2`
dsjsj �Gij�0, s� 2 Gij�r, s�� , (15)

in which Gij�r, t� � �yi�r, t�yj�0, 0�� (! 0 for t . t) is
the Eulerian velocity correlator. In deriving (15), a term
~ t for t . t actually vanishes due to f�0� � 0. Cor-
rections to (15) are of relative O�u2

0�c2
0�. In computing

the Fourier transform R̂�k�, this requires k2u4
0t2�c2

0 

�kl0�2�u0�c0�4 ø 1, i.e., k ø c2

0�u2
0l0. Since the in-

ertial range of v corresponds roughly to k . 1�l0, the
present calculation will be valid for k quite far inside it.

Within the above range one must consider two sub-
ranges: 1 , kl0 , c0�u0 and c0�u0 , kl0 , �c0�u0�2.
In evaluating (14) these correspond to the small r
5013
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FIG. 2. Power spectrum of chlorophyll-a fluctuations in an
ocean area east of Honshu Island (Japan), based on analysis
of the OCTS multispectral imagery obtained from the ADEOS
satellite (courtesy of the Japanese Space Agency NASDA).
Dotted line: k21 power law. Inset: Power spectra of sea surface
height variations in this region, as described in the caption to
Fig. 1.

asymptotics of R�r� in the ranges u0�c0 , r�l0 , 1
and �u0�c0�2 , r�l0 , u0�c0, respectively. In the first
range, one is permitted to expand the exponential in (14),
yielding, in Fourier space, R̂�k� � R̂0�k� 1 DR̂�k�, with

DR�k� � c̄2k2�FL�k��v�k�2 1 FL�2k��v�2k�2� ,
(16)

where c̄ is the overall mean concentration, and FL�k� �P
ij kikjFij�k� is the longitudinal (i.e., compressional part

of the) wave-number spectrum Fij�k� � f�k�êi�k�ê�
j �k�

[the Fourier transform of Gij�r, 0�] [12]. The waves
therefore give an additive contribution to the background
spectrum, observable then only if DR̂�k� * R̂0�k�, i.e., in
regions of low eddy turbulence. For observed (angle in-
tegrated) spectrum kFL�k� 
 k23, and v 
 c0k (appro-
priate to BIG waves shorter than the Rossby radius) one
finds kDR�k� 
 k23. This subrange corresponds nicely
to the 1022 –1021 km21 range, and Eq. (16) is therefore
completely consistent with Fig. 1.

In the second subrange, treating for simplicity only the
isotropic case Gij�r� � G�r�dij, Eq. (14) may be reduced
to the form (valid now for general d)

K�r 0, jr0 2 rj� � �2pG�r 0��2d�2e2jr02rj2�2G�r 0�. (17)
5014
The small r asymptotics of R�r� may be analyzed and
one finds the following: if R0�r� � R0�0� �1 2 Ara�,
G�r� � Brb , then R�r� � R�0� �1 2 Crm�, with
m�a, b� � 2�a 1 d��b 2 d, corresponding to an
angular integrated spectrum kd21R̂�k� 
 k2p with

p�a, b� � m 1 d 2 �d 2 1�

� 2�a 1 d��b 1 1 2 d . (18)

Defining z , q via v�k� 
 kz and FL�k� 
 k2d2q,
Eq. (15) yields b � min�q 1 2z , 2
. For q . 0, z � 1,
which includes BIG waves, one finds b � 2, and hence
m � a: the spectrum is unrenormalized in this regime.
This remains to be tested by observational data.

Part of this work was performed at the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Admini-
stration.
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