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Departure from Fourier’s Law for Fluidized Granular Media
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Molecular dynamics simulations of the inelastic hard sphere model for granular media have been done
to study the heat conduction between two parallel plates. The results show that Fourier’s law is not valid
and a new term proportional to the density gradient must be added to compute the heat flux. The new
transport coefficient associated with the density gradient dependence has been measured vanishing in the
case of elastic collisions.

PACS numbers: 45.70.Mg, 44.10.+ i, 51.20.+d
Much interest has been devoted to the study of granular
media in recent years. The understanding of static and dy-
namic properties in this form of matter is crucial in many
aspects of industrial processes ranging from pharmaceuti-
cals to civil engineering, as well as in some basic physical
phenomena such as those studied in geophysics [1,2].

In the last decade, many groups have developed new
experimental and theoretical techniques to approach grain
piles and flows from a fundamental perspective [2–7]. The
observed flow properties, for instance, are often similar to
those of fluids (convective instabilities, pattern formation,
or time periodicity) but evidence of differences with fluids
is also compelling: strain-stress localization, unexpected
patterns, long range correlations, large inhomogeneities,
or absence of spatial scale separation [8,9] call for a more
specific description.

In addition to continuum theories, new approaches com-
ing from statistical mechanics have also been proposed.
Granular flow peculiarities have been reproduced using
molecular dynamics techniques and simplified grain mod-
els [10,11]. The aim of such approaches is to define the
simplest possible model for grains able to reproduce, at
least qualitatively, the observed behavior and then to use
the techniques of statistical mechanics to deduce macro-
scopic or continuum equations. This is precisely the ra-
tionale of the work that we present here: we will show
evidence, obtained from molecular dynamics simulations
of inelastic hard spheres (IHS), that Fourier’s law relating
heat flux and temperature gradient in fluids or solid mate-
rials has to be modified in the case of fluidized granular
matter. Note that the concepts of temperature and heat
flux have been generalized to granular systems using the
kinetic theory definitions, neglecting the internal degrees
of freedom of the grains.

The inelastic hard sphere model does simplify very
much the interactions of grains. In this model, grains are
described by smooth spheres of equal diameter, s, that
have only translational degrees of freedom. The collisions
are instantaneous events and the energy dissipation in
0031-9007�99�83(24)�5003(4)$15.00
collisions is simplified to a description with only one pa-
rameter, the restitution coefficient, r , which is introduced
in the following collision rules:
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where the primes indicate velocities after collision and n̂
is the unit vector pointing from the center of particle 1
towards the center of particle 2. It is convenient to define
the dissipation coefficient q � �1 2 r��2 which vanishes
when collisions are elastic.

This model is not sufficient for a quantitative descrip-
tion of real granular flows where roughness, rotational
energy, static friction, or polydispersity are needed to be
introduced to predict flow properties. But it has proved
sufficient to reproduce clustering phenomena, shearing in-
stabilities, vibrated bed convection, pipe flow, and so on
[12–17]. And the simplicity of the model allows one to
address the question of how the hydrodynamic equations
for fluids are modified when dissipativity is introduced in
the collision rules.

Hydrodynamic equations, modified by the addition of a
sink term in the energy equation, have been proposed in or-
der to describe the long-wavelength long-time behavior of
granular fluids with a dissipativity coefficient of only a few
percent [18–20]. In those approaches, phenomenologi-
cal relations (Navier-Stokes and Fourier’s laws) between
thermodynamic forces (gradients of density, velocity, and
temperature) and fluxes as well as equations of states are
introduced, extending then the properties of fluids made
of elastic hard spheres to dissipative systems. Theoretical
results compare generally well with those obtained from
simulations done on computers.

Despite the dissipative nature of collisions, if the macro-
scopic field gradients are not so large, it seems natural
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to postulate linear relations between fluxes and thermo-
dynamic forces. Then, in general, the heat flux can be
expressed as [21]

J � 2k=T 2 m=n , (3)

where k is the thermal conductivity and m is a new trans-
port coefficient. There is no dependence on the velocity
gradient because of tensorial arguments (Curie’s theorem).

If the system obeyed the second law of thermodynam-
ics m would vanish and k would be positive in order that
heat flows from hot to cold. On the other hand, in granu-
lar systems—when one neglects the internal heating of the
grains on collisions—entropy production is not expected
to be positive and there is no a priori reason for discard-
ing the dependence of J on the density gradient, but the
new transport coefficient m must go to zero with the dissi-
pation coefficient q. Conservative systems put in far from
equilibrium regimes also show deviations from Fourier’s
law and the linear corrections analog to (3) must be added
[22–24].

The constitutive equation (3) has been proposed using
a Chapman-Enskog type of expansion for the solution of
Boltzmann and Enskog equations generalized to the case
of dissipative systems [25–28]. The coefficient m has
been computed for some models, but in those approaches
the macroscopic equations are not derived but, in fact,
postulated. We will show that simulation results support
Eq. (3) and compute the coefficients k and m, the latter
being different from zero.

In this Letter we start from a more fundamental level of
description, i.e., molecular dynamics simulations of IHS,
to study the macroscopic behavior of the heat flux. In par-
ticular, we examine the relation between the heat flux J
and temperature and density gradients. That is, we exam-
ine whether Fourier’s law is valid in this granular model
or if it must be modified according to (3).

We have done molecular dynamics simulations of dilute
two-dimensional systems composed of IHS under the in-
fluence of gravity. A total number of N � 1000 spheres
are placed in a square box with horizontal periodic bound-
ary conditions. Energy is injected in the system through
thermal stochastic walls at the top and at the bottom. Each
time a particle hits them a new random velocity is sampled
out of a Maxwellian distribution at the same temperature
T0 for both walls.

Units are chosen such that the disk diameter s and the
disk mass m are equal to one. Also, since in the IHS model
there is no intrinsic energy scale, the wall temperature T0
is set to one. Finally, we define the granular temperature as
the average kinetic energy per particle; that is, Boltzmann’s
constant is set to one.

Three series of simulations were done for different val-
ues of gravity acceleration, g � 0.005, g � 0.01, and g �
0.02. Global number density (defined as N�L2, where
L is the length of the box) was always set to n0 � 0.01
and the dissipation coefficient took the values q � 0.01,
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q � 0.02, q � 0.03, q � 0.04, q � 0.05, q � 0.07, and
q � 0.10.

Given a particular value of the global density n0, grav-
ity acceleration g, and dissipation coefficient q, the system
is simulated until it reaches a stationary state character-
ized by time independent macroscopic fields and a van-
ishing velocity field. In these conditions the system is
simulated for a long time (2.5 3 105 collisions per par-
ticle) where macroscopic fields are measured using care-
fully devised measurement routines described in [29]. In
particular, the following fields were computed: number
density n�r�, temperature T �r�, and heat flux J�r� (includ-
ing both the kinetic and potential contribution). From these
fields, once horizontally averaged, one obtains the density
and temperature gradients. Under the above described
simulation conditions (low density and dissipativity) the
system does not show clustering, then all the system inho-
mogeneities are of hydrodynamic character.

Because of the dissipative character of the IHS, even if
the top and bottom walls are at the same temperature, the
temperature profile is not uniform and has a minimum at
some height, y�, in the interior of the system. The energy
that is dissipated in the bulk comes from the walls produc-
ing a net heat flux that goes from the walls to the bulk.

Gravity produces a nonuniform pressure, monotoni-
cally decreasing with height, obeying, in fact, the baro-
metric law

=p�r� � 2gn�r� . (4)

Assuming a local equation of state, p�r� �
p�n�r�, T �r�� [30], the temperature gradient and the
density gradient are related by

≠p
≠n

=n 1
≠p
≠T

=T � 2gn . (5)

Then, according to (3) and (5) a nonvanishing heat flux
can be measured at y� only if gravity is different from zero.

Figure 1 shows the density profile, the temperature pro-
file, and the heat flux obtained in a simulation with g �
0.01 and q � 0.05. It is clear that the heat flux is not
zero at the minimum of T , thus contradicting Fourier’s
law. Also, in the complete region between y� and the point
where the heat flux vanishes, Fourier’s law is violated. In
effect, in this region the heat flux is parallel to the tem-
perature gradient, that is, heat is flowing from cold to hot,
contradicting the second law of thermodynamics. Similar
results are obtained in all the other simulations.

These results show that the modified heat law (3) must
be used. The value of the new transport coefficient m can
be obtained directly by computing the heat flux and the
density gradient at y�. We define first the nondimensional
coefficient m̂ � nm�T3�2. This nondimensional coeffi-
cient could depend on density and dissipation but not on
temperature since for the IHS there is no nondimensional
number that can be built that depends on temperature (the
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FIG. 1. Density (up), temperature (middle), and heat flux
(bottom) profiles as a function of height for a simulation with
g � 0.01 and q � 0.05. The total height of the system is
L � 316, but only a section is shown. The minimum of T
is located at y� � 51 (indicated by the vertical dashed line),
whereas the heat flux vanishes at y � 149 (outside the plot
range).

number mgs�T should not be taken into account due to
Galilean invariance).

For every simulation we located the position of y� using
a polynomial fit to the temperature profile and then com-
puted m̂ as

m̂ � 2
nJ

T3�2=n

Ç
y�y�

. (6)

Figure 2 shows the measured values of m̂ as a function
of q for the three series of simulations. The different
values of the gravity acceleration g produce a change in the
density at y�, and thus different values for m̂ are obtained.
The error bars are computed from the uncertainty on the
position of the minimum of T . In the simulations with
g � 0.005 and q from 0.01 to 0.03 it was not possible
to obtain with enough accuracy the position y� because
the effective dissipation was so small that the temperature
profile was extremely flat.

It is clear that m̂ vanishes with q. In all cases the density
at y� is small but not negligible so density corrections to
the ideal gas expression should be expected. A fit to the
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FIG. 2. Nondimensional transport coefficient m̂ as a function
of dissipation q. The three series of values correspond to dif-
ferent values of gravity acceleration g. Note that the value of
density at y�, minimum of temperature, depends on g.

obtained values of m̂ was done including linear density and
quadratic dissipation dependence, giving

m̂ � 0.7q��1 1 13.3n� 1 55.0q�1 1 0.77n�� , (7)

where the fact that m̂ must vanish when q goes to zero was
imposed in the fit.

The lack of independent computations of the thermal
conductivity k does not allow one to test (3) and (7) outside
y�. To make a consistent analysis, q corrections to the
thermal conductivity are needed as m is proportional to q.
This, however, does not restrict the general validity of (7)
since its spatial dependence is given implicitly in terms of
the density, temperature, and dissipativity.

The simulation methodology used to compute m can be
applied only to a limited range of values for the simula-
tion parameters (global density, dissipation, gravity) since
different unwanted phenomena start to happen outside that
restricted range. If dissipation or density take larger values,
the density at the center of the box increases near to solid
values making the approach unsuitable. Also, when grav-
ity is increased a spontaneous convective motion develops
[31] which makes the field depend on the x coordinate.
In the other extreme, low values of gravity or dissipation
produce poor statistics, and a further decrease of density
would make the mean free path comparable to the size of
the box, not allowing to work with local transport laws.

In conclusion, molecular dynamics simulations for a
simple granular model show that the standard Fourier’s
law of thermal conductivity should be modified, adding
a dependence on the density gradient to the usual tem-
perature gradient dependence. Using stationary nonequi-
librium techniques we have computed the value of the new
transport coefficient m. This coefficient, that vanishes for
elastic collisions, has a large dependence on the dissipa-
tion coefficient q and on density. It is expected that this
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departure from Fourier’s law is generic for granular media
and not restricted to the IHS model.
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