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Flowing Sand: A Physical Realization of Directed Percolation

Haye Hinrichsen,1 Andrea Jiménez-Dalmaroni,2,3 Yadin Rozov,2 and Eytan Domany2
1Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany
2Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

3University of Oxford, Department of Physics-Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
(Received 9 August 1999)

We introduce and investigate a simple model to describe recent experiments by Douady and
Daerr on flowing sand. The model reproduces experimentally observed compact avalanches, whos
opening angle decreases linearly as a threshold is approached. On large scales the model exhibits
crossover from compact directed percolation to directed percolation; we predict similar behavior for
the experimental system. We estimate the regime where “true” directed percolation morphology and
exponents will be observed, providing the first experimental realization for this class of models.

PACS numbers: 45.70.Ht, 64.60.Ak, 64.60.Ht
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Directed percolation (DP) is perhaps the simplest mod
that exhibits a nonequilibrium phase transition between
“active” or “wet” phase and an inactive “dry” one [1]. In
the latter phase the system is in a single “absorbing” sta
once it reaches the completely dry state, it will alwa
stay there.

Interest in DP stems mainly fromuniversality of the as-
sociated critical behavior. It is believed that transition
in all models with an absorbing state are in the DP u
versality class (unless there are some special underly
symmetries). Even though DP exponents have not
been calculated analytically, their values were measu
for a wide variety of models and are known (especially
1 1 1 dimensions) with very high precision [2].

Models in the DP universality class are supposed
describe a wide variety of phenomena, ranging fro
catalysis to turbulence [3]; nevertheless, so far no physi
system has been found that exhibits DP behavior a
exponents [4]. We show here that a simple system of sa
flow on an inclined plane, recently studied by Douady a
Daerr (DD) [5], may well be the first physical realizatio
of a transition in the DP universality class.

The results reported by DD present a puzzle: name
the threshold phenomenon they discovered exhibits w
clusters whose shapes differ from those seen in st
dard DP simulations; they are much more compact. T
corresponding model, called compact directed percolat
(CDP) is unstable against perturbations towards the st
dard DP behavior [6]; the latter is the generic case e
pected to occur. Since DD did no fine-tuning to plac
their system in the CDP class, their observations a
surprising.

This motivated us to look for a simple model, which
defined in terms of dynamic rules that can be plausib
related to the experiments and exhibits features t
reproduce the experimentally observed ones. We th
investigated whether the transition exhibited by such
model belongs to the DP universality class.

We propose adirected sandpile model, simpler than
that of Tadic and Dhar [7]; here after each avalanc
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the system is reset to a uniform initial state. O
model has a transition from an inactive to an acti
phase, in which we see avalanches whose compact sh
reproduce the experimental observations, and, indeed
resulting critical behavior is close to CDP, rather th
to DP. We resolve this by showing that the CDP ty
critical behavior is a transient: the true critical behav
is of the DP type, but it can be seen only after a ve
long crossover regime. Our conclusion is that the D
experiment does serve as a possible realization of a
type transition. We propose here ways to shorten
crossover regime and to extend the scale on which
experiments are performed.

The Douady-Daerr experiment.—Glass beads (“sand”
of diameter250 425 mm [5] are poured uniformly at
the top of an inclined plane (size�1 m), covered by
a rough velvet cloth; the angle of inclinationw0 can
be varied. As the beads flow down, a thin layer
thicknessh � hd�w0�, consisting of several monolayer
settles and remains immobile. At this thickness the s
is dynamically stable; the value of hd decreases with
increasing angle of inclination.

For eachw0 there exists another thicknesshs with
hs�w0� . hd�w0�, beyond which astatic layer becomes
unstable. Hence there exists a region in the�w, h�
plane in which a static layer is stable but a flowin
one is unstable. We can now take the system t
settled athd�w0� and increase its angle of inclinatio
to w � w0 1 Dw, staying within this region of mixed
stability. The layer will not flow spontaneously, but
we disturb it, generating a flow at the top, an avalanc
will propagate, leaving behind a layer of thicknesshd�w�.
These avalanches had the shape of a fairly regular tria
with opening angleu. As the incrementDw decreases
the value ofu decreases as well, vanishing asDw ! 0.
This calls for testing a power law behavior of the form

u � �Dw�x . (1)

If instead of increasingw we lower the plane, i.e., go to
Dw , 0, the thickness of our system,hd�w0�, is less than
© 1999 The American Physical Society 4999
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the present thickness of dynamic stability, hd�w�. In this
case an initial perturbation should not propagate; it will
rather die out after a certain time (or beyond a certain size
jk of the transient avalanche). As jDwj ! 0, we expect
this decay length to grow with a power law:

jk � �2Dw�2nk . (2)

Hence by pouring sand at inclination w0, DD produced a
critical system, precisely at the borderline (with respect to
changing the angle) between a stable regime w , w0, in
which perturbations die out, and an unstable one w . w0,
where perturbations persist and spread. The preparation
procedure can be considered as a special kind of self-
organized criticality (SOC) which differs from standard
SOC models [8] in which a slow driving force (acting
on a time scale much smaller than that of the system’s
dynamic response) causes evolution to a critical state.
Here avalanches are started by hand one by one.

To associate this threshold phenomenon with DP,
denote by p the percolation probability and by pc its
critical value. We associate the change in tilt with
p 2 pc, i.e., assume that near the angle of preparation
w0 the behavior of the sand system is related to a DP
problem with Dw ~ p 2 pc. The exponent nk should be
compared with the known values for DP and CDP. The
exponent x in Eq. (1) can also be measured and compared
with

tanu � j��jk � �Dw�nk2n� . (3)

Definition of the model.—To write down a simple
model based on the physics of the flowing sand, we adopt
an observation made by DD that in the regime of inter-
est (w � w0) grains of the top layer rest on grains of the
layers below (rather than on other grains of the top layer).
Hence the lower layers provide for the top one a wash-
board potential, as shown in Fig. 1.

We place the grains of the top layer on the sites of a
regular square lattice with row index t and columns i. At
any given time a grain G may become active if at least
one of its neighbors from the row above has been active
at the previous time step. If DE�G�, the total energy
transferred from these neighbors, exceeds the barrier Eb

of the washboard, G becomes active, “ rolls down,” and
collides with the grains of the next row. The energy it
brings to these collisions is 1 1 DE�G�, where 1 is our
unit of energy, representing the potential energy due to

b

ϕ

}1
{E

FIG. 1. The top layer of sand in a washboard potential.
5000
the height difference between two consecutive rows (see
Fig. 1). A fraction f of its total energy is dissipated; the
rest is divided stochastically among its three neighbors
from the lower row.

The model is defined in terms of two variables; an
activation variable St

i � 0, 1 and an energy Et
i . The index

t denotes rows of our square lattice and time; at time t we
update the states of the grains that belong to row t. The
model is controlled by two parameters: Eb , the barrier
height, and f, the fraction of dissipated energy.

The dynamic rules of our model are as follows. For
given activities St

i and energies Et
i we first calculate the

energy transferred to the grains of the next row t 1 1.
To this end we generate for each active site three random
numbers, zt

i �d� (with d � 61, 0) that add up to 1. The
energy transferred to grain �t 1 1, i�, given by

DEt11
i � �1 2 f�

X
d�61,0

St
i2dEt

i2dzt
i2d�d� , (4)

determines its activation:

St11
i �

Ω
1 active if DEt11

i . Eb ,
0 inactive if DEt11

i # Eb .
(5)

Then the energies of the next row of grains are set:

Et11
i � St11

i �1 1 DEt11
i � . (6)

The three random numbers zt
i �d� represent the fraction of

energy transferred from the grain at site �t, i� to the one at
�t 1 1, i 1 d�. We add up the energy contributions from
these active sites; the fraction 1 2 f is not dissipated;
if the acquired energy DEt11

i exceeds Eb , site �t 1 1, i�
becomes active, rolls over the barrier, and brings to the
collisions (at time t 1 2) the acquired energy calculated
above and its excess potential energy (of value 1).

Qualitative discussion of the transition and connec-
tion to the experiment.—Let us vary Eb at a fixed value
of the dissipation. For small values of Eb an active
grain will activate the grains below it with high proba-
bility; avalanches will propagate downhill and also spread
sideways. For a strongly localized initial activation we
should, therefore, see triangular shaped activated regions.
As Eb increases, the rate of activation decreases and the
opening angle u of these triangles should decrease, until
Eb reaches a critical value Ec

b , beyond which initial acti-
vations die out in a finite number of time steps (or rows).
These expectations are indeed borne out by simulations of
the model: the dependence of Ec

b on the dissipation f is
shown in Fig. 2.

The physics of the process is captured by a simple
mean-field type approximation, in which all stochastic
variables are replaced by their average values. Consider
an edge separating an active region from an inactive one.
At time t sites to the left of i and i itself are wet, whereas
i 1 1, i 1 2, . . . are dry. Will site i be wet or dry at
the next time step? In our mean-field estimate of the
answer, assuming that all wet sites at time t have the
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FIG. 2. Phase diagram of the model for flowing sand. The
full line represents the phase transition line. The mean-field
approximation of Eq. (7) is shown as a dotted line. The inset
shows the opening angle tanu as a function of Ec

b 2 Eb .

same energy Et , the energy delivered to site i at time
t 1 1 is DEt11

i �
2
3 �1 2 f� �1 1 DEt�, where we set in

Eq. (4) all z�d� � 1�3. At the critical point we expect
all energies to just suffice to go over the barrier; hence
set DEt11

i � DEt � Ec
b . Solving the resulting equation

yields a rough estimate of the transition line,

Ec
b � 2�1 2 f���1 1 2f� , (7)

as shown in Fig. 2. It is easy to produce better mean-
field type estimates of the transition and to compute the
corresponding energy profile of the wet region [9].

To connect our model to the DD experiments note
that the tilt angle w tunes the ratio between the barrier
height and the difference of potential energies between
two rows. When the system is prepared at w0, this ratio
is precisely Ec

b . When one increases the tilt angle to
w . w0, Eb (measured in units of the potential difference)
decreases and we have Eb , Ec

b . As the tilt angle is now
reduced, the size of Eb increases, until it reaches its critical
value precisely at w0. Thus increasing Eb in the model
corresponds to lowering the tilt angle towards w0 where
the system is precisely at its boundary of dynamic stability.

Hence to reproduce the experiment we were looking
for (a) fairly compact triangular regions of activation for
Eb , Ec

b , and (b) an opening angle of these triangles
which should go to zero as Eb approaches Ec

b from below.
We simulated the model defined in Eqs. (4)–(6) and

found that it indeed reproduces these qualitative features
of the experiment (see Fig. 3). The avalanches shown
were produced for dissipation f � 0.5, activating a single
site at t � 0, to which an initial energy of E0 � 100 was
assigned. As long as Eb was not too close to Ec

b the
observed avalanches were compact, triangular, and with
fairly straight edges. The edges became rough only very
close to Ec

b , such as the one shown on the right hand
FIG. 3. Typical avalanches starting from a single seed with
dissipation f � 0.5 far away and close to criticality.

side of Fig. 3. The opening angle of the active regions u

decreased as Eb increased towards Ec
b , as indicated in the

inset of Fig. 2. From these simulations we estimated Ec
b

and the exponent [see Eq. (3)]

x � nk 2 n� � 0.98�5� � 1 . (8)

The linear variation of tan�u� with Dw is in agreement
with experimental measurements [5]. Our findings have
to be compared with the mean-field theory suggested in
Ref. [10] which predicts a square root behavior.

Crossover to directed percolation.—The linear law (8)
is consistent with the critical exponents of CDP [11],

nk � 2, n� � 1, b � 0 . (9)

These observations pose, however, a puzzle: since one be-
lieves that DP is the generic situation, one would expect
to find noncompact active regions and DP exponents. In
fact, according to the DP conjecture [12] any continuous
spreading transition from a fluctuating active phase into a
single frozen state should belong to the universality class
of DP, provided that the model is defined by short range
interactions without exceptional properties such as higher
symmetries or quenched randomness. The present model
has neither special symmetries nor randomness [13]; it has
a fluctuating active phase and exhibits a transition, charac-
terized by a positive one-component order parameter, into
a single absorbing state. Hence the phase transition of our
model should belong to the DP universality class.

In order to understand this apparent paradox we per-
formed high-precision Monte Carlo simulations for dissi-
pation f � 0.5 (see [9] for further details). We performed
time-dependent simulations [14]; i.e., we toppled a single
grain in the center of the top row and measured the sur-
vival probability P�t� and the number of active sites N�t�.
At criticality, these quantities exhibit an asymptotic power
law behavior,

P�t� � t2d , N�t� � th . (10)

In the case of CDP these exponents are given by [6,11]
d � 1�2 and h � 0, whereas DP is characterized by the
exponents [2] d � 0.1595 and h � 0.3137. Detecting
deviations from power law behavior in the long-time limit
we estimated Ec

b � 0.385 997�5�.
5001
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FIG. 4. Average number of active sites N�t� and mean
survival probability P�t� of the toppling process at criticality
averaged over 50 000 runs. The predicted slopes for CDP and
DP are indicated by dotted and dashed lines, respectively.

Numerical results, obtained from simulations at Ec
b ,

are shown in Fig. 4. After a short transient the system
enters an intermediate regime, which extends up to several
hundred time steps. Here the active sites form a single
cluster and we observe power law behavior with CDP
exponents (dotted lines in Fig. 4). This intermediate
regime is followed by a long crossover from CDP to DP,
extending over almost two decades up to more than 104

time steps, after which the system enters an asymptotic
DP regime (indicated by dashed lines in Fig. 4).

Compared with ordinary DP lattice models, this
crossover regime is extremely long. We observed that by
increasing f the crossover time can be reduced by more
than one decade. Hence, for an experimental verification
of DP, systems with high dissipation are more appropriate.
The present experiments correspond to about 3000 time
steps (rows of beads); increasing this to about 104 by using
a longer inclined plane and smaller beads should yield DP
behavior, provided that deviations of the experiment from
the model do not increase with system size.

The crossover from CDP to DP is illustrated in Fig. 5.
Two avalanches are plotted on different scales. The left
one represents a typical avalanche within the first few
thousand time steps. As can be seen, the cluster appears
to be compact on a lateral scale up to 100 lattice sites.
However, as can be seen in the right panel of Fig. 5,
after very long time the cluster breaks up into several
branches, displaying the typical patterns of critical DP
clusters. Thus, before measuring critical exponents, this
feature has to be tested experimentally. To this end
the DD experiment should be performed repeatedly at
the critical tilt w � w0. In most cases the avalanches
will be small and compact. However, sometimes large
avalanches will be generated which reach the bottom
of the plate. If these avalanches are noncompact, we
5002
FIG. 5. Typical clusters generated at criticality on small and
large scales, illustrating the crossover from CDP to DP.

expect DP-type asymptotic critical behavior. Only then
is it worthwhile to optimize the experimental setup and to
measure the critical exponents quantitatively.
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