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Three-Dimensional Optical Crystals and Localized Structures
in Cavity Second Harmonic Generation
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By using an order parameter description of the type-II second harmonic generation, we prove analyti-
cally that different 3D periodic solutions exist and have overlapping domains of stability. The stable
periodic solutions are lamellae, 3D hexagons, and a body-centered cubic pattern. The coexistence of
periodic and homogeneous solutions leads to localized structures such as light drops and cylinders which
are found numerically.

PACS numbers: 42.65.Sf, 42.60.Mi, 42.65.Pc
Pattern formation is an important and active topic in non-
linear optics. Early theoretical approaches have predicted
the occurrence of spatial patterns in the transverse intra-
cavity field due to the interplay between Kerr media and
diffraction [1,2]. Since then, various types of periodic or
localized patterns have been observed in optical devices.
This topic has been abundantly discussed and is by now
fairly understood (see Refs. [3,4] for reviews).

In another line of research, theoretical and experimen-
tal studies have shown that the chromatic dispersion, due
to the intracavity medium, plays an important role in the
dynamics of nonlinear optical systems, and may induce
a temporal modulational instability [5,6]. In the theoreti-
cal studies, diffraction is neglected, e.g., the intracavity
fields are spatially stabilized by using guided-wave struc-
tures. For a coherently driven passive ring cavity with a
Kerr medium, a purely analytic study indicates that the
chromatic dispersion may destabilize the hexagonal pat-
terns and allows the formation of three-dimensional (3D)
body centered cubic (bcc) structures in the cavity field [7].
These structures consist of regular 3D lattices of bright
spots traveling at the group velocity of light in the mate-
rial. They dominate the nonlinear dynamics of the disper-
sive and diffractive Kerr nonlinearity near the modulational
instability.

The purpose of this Letter is to report on analytic and
numerical investigations of 3D periodic patterns due to the
combined influence of diffraction and chromatic dispersion
in intracavity type-II second harmonic generation (SHG).
This process involves the field polarization degrees of free-
dom due to the birefringence of the x �2� crystal.

Close to the modulational threshold where patterns
emerge, we derive a Swift-Hohenberg (SH) equation with
real coefficients and both quadratic and cubic nonlineari-
ties. As a result, we are able to prove analytically that
the bcc, 3D hexagonal and lamella patterns have overlap-
ping finite domains of stability, while the rhombic and
face-centered cubic (fcc) lattices are completely unstable.
These results are supported by numerical simulations.
Similar structures have been observed in chemical systems
[8], and in lasers [9]. In a very general context, Pismen
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has recently studied the role of 3D topological defects in
nonequilibrium systems [10].

More importantly, in the regime where the stable homo-
geneous steady state (HSS) coexists with the 3D periodic
crystals, an additional variety of stable 3D localized struc-
tures (LS) can be generated. They result in the confinement
of the intracavity field both in space and time, leading to
isolated light drops and cylinders. The existence of these
3D LS does not require a bistable HSS. They can be stable
in the regime where the single HSS exhibits a subcritical
modulational instability.

The optical system we consider is the type-II SHG: an
optical cavity filled with a x �2� medium and coherently
driven by an injected signal at frequency v produces a
field at 2v. We assume the validity of the mean field ap-
proximation (high finesse cavity) which oscillates on only
one longitudinal mode. Taking into account diffraction and
chromatic dispersion, type-II SHG can be described by the
following dimensionless partial differential equations:
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where E1,2 are the normalized slowly varying envelopes of
the fundamental fields at frequency v, polarized along the
x̃ and ỹ orthogonal transverse directions. E0 is the second
harmonic envelope at frequency 2v. The time t, describ-
ing the slow evolution of the field envelopes between two
consecutive cavity round-trips, has been scaled such that
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the decay rate of the second harmonic is unity. t̃ is the
time in a reference frame traveling at the group velocity
of light in the x �2� medium. g is the ratio of the photon
lifetimes at frequencies 2v and v. The input field E is
linearly polarized in a direction forming an angle u with
the transverse ỹ axis. L� � ≠2�≠x̃2 1 ≠2�≠ỹ2 is the
Laplace operator in the transverse plane �x̃, ỹ�. The pa-
rameters dj represent the group velocity of the fields Ej .
The phase matching condition imposes that the ratio of the
diffraction coefficients be a � 2 [11]. d � b1�b2, where
b1,2 are the dispersion coefficients at frequency v and 2v,
respectively. d can be positive or negative, depending on
the relative position of the zero material dispersion with
respect to v and 2v. We analyze the anomalous disper-
sion regime for which d . 0. In that case, the second-or-
der derivatives form a 3D Laplace operator acting in the
Euclidean space �x, y, t�, with x � x̃�

p
a, y � ỹ�

p
a

and t � t̃�
p

d.
We focus our analysis on the situation usually real-

ized experimentally, namely, quasisymmetric pumping
�u � 45±�. With this simplification, it is more conve-
nient to introduce the following decomposition of the
fundamental fields, the detuning and the injected signal:
E6 � �E1 6 E2��

p
2, D6 � �D1 6 D2��

p
2, and Y6 �

E�cosu 6 sinu�
p

2. It has been demonstrated recently
by Longhi [12] that, in the limit D0, D1 � O �´�,
D2 � O �´2�, E1 � O �´2�, E2 � O �´3�, d0, d1 �
O �´�, and d2 � O �´2� where ´ is a small parameter, the
two–dimensional (2D) spatiotemporal dynamics of type-II
SHG can be described by an SH equation. Taking into
account chromatic dispersion and fixing g � 1 for sim-
plicity, a similar multiple-time scale expansion leads to the
generalization of the SH equation derived for type-II SHG
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There is bistability if m . 0. A linear stability shows
that the HSSs undergo a modulational instability leading
to periodic patterns. This instability occurs in the range
SM2 , S , SM1, where SM6 � 6�D2

1 2 2m�XM6�3

and XM6 � 62
qp

2�D2
1 1 m��3. In this interval, there

exists a finite band of Fourier modes qj which are linearly
unstable and trigger spontaneously the evolution of the
intracavity field toward the formation of regular lattices
of 3D bright spots (or light bullet [13,14]) traveling at the
group velocity of the light within the cavity. This instabil-
ity is caused by the competition between two processes:
(i) diffraction and chromatic dispersion which tend
to restore both spatial and temporal uniformity in the
4996
�x, y, t� space, and (ii) the nonlinearity that is respon-
sible for the amplification of both spatial and temporal
inhomogeneities. The balance between the two processes
generates well-known spatial and temporal modulational
instabilities. The maximum gain (i.e., the most unstable
wave number) is qM �

p
2D1. It is the same at both

bifurcation points. In between, the HSS solution is
linearly unstable with respect to fluctuations with wave
vectors qj having the same maximum wave number
q � qM but arbitrary direction in the 3D Fourier space.
Since the system is isotropic in the �x, y, t� space, these
unstable wave vectors do not have any preferred direc-
tion. Although an indefinite number of modes may be
generated with arbitrary directions, a regular pattern is
selected and emerges due to the nonlinear interaction.
Our purpose here is to study analytically this 3D pattern
selection mechanism in the weakly nonlinear regime
where the HSS is monostable �m , 0�. For this purpose,
we introduce the deviation u�x, y, t, t� from the HSS as
X�x, y, t, t� � Xs 1 u�x, y, t, t�. There is no assumption
yet that these deviations are small. Under this transforma-
tion, Eq. (4) becomes
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To calculate the solutions emerging from the modulational
critical points, we use the weakly nonlinear theory to de-
rive amplitude equations for the critical modes and assess
their stability. To this end, we introduce a small parameter
h which measures the distance from the modulational
instability: j�S 2 SM6��SM6j � h. Let us focus
on the instability around �SM2, XM2�. The analysis
of the 3D structures around �SM1, XM1� is the same
since Eq. (4) is invariant under the inversion symmetry
�S, X� ! �2S, 2X�. Next, we expand the variable
u�x, y, t, t�, the parameter S, and Xs in powers of
h: �S, Xs, u� � �SM2, XM2, 0� 1

P
i hi�si , ai , ui�. To

leading order in h, the solution of Eq. (5) is a linear
superposition of � pairs of opposite wave vectors qj lying
on the critical sphere of radius qM :

u0 �
�X

j�1

�Wj expi�qj.r� 1 c.c.� ,

jqjj � qM �
p

2D1 ,
(6)

where c.c. denotes the complex conjugate. The stripes (or
lamellae) and rhombic cells are characterized by � � 1 and
� � 2, respectively, and the 3D hexagons (or hexagonally
packed cylinders) are obtained for � � 3 with q1 1 q2 1

q3 � 0 and qj � qM . The face-centered cubic (fcc) lat-
tice and the quasiperiodic crystals correspond to � � 4 and
� � 5, respectively. The body-centered cubic (bcc) lat-
tice is obtained for � � 6. Since we are interested in the
analysis of the 3D structures with periodic boundary con-
ditions, quasiperiodic crystals �� � 5� are not considered.
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The 3D structures corresponding to � � 2 (rhombic lat-
tice) and � � 4 (fcc lattice) are always less stable than the
lamellae, the hexagons, and the bcc structures. In the fol-
lowing, we will therefore consider only the formation and
the competition between these three classes of structures.

Following the approach used in [7], we derived a set
of mode amplitude equations for the different 3D struc-
tures. The linear stability analysis of these structures
against internal perturbations of their steady-state solutions
and the relative stability analysis, i.e., the stability of one
pattern against perturbations favoring another structure,
indicate the occurrence of transitions and multistability
between these 3D structures. The results of that stability
analysis are summarized in the bifurcation diagram dis-
played in Fig. 1, where we have plotted the maximum
amplitude of lamellae, hexagons, and bcc structures ver-
sus k, which k is the relative distance from criticality,
i.e., k � �S 2 SM6��jSM6j. When increasing the con-
trol parameter k from the region k , kA, bcc structures
appear first. They are stable for kA , k , k3. The
3D hexagons are stable for kB , k , k2. Finally, for
k . k1, lamellae are stable. Our weakly nonlinear analy-
sis is restricted to the regime where the homogeneous
steady state exhibits a supercritical modulational bifurca-
tion, i.e., m , 276��29D2

1�.
The predictions of the above weakly nonlinear analy-

sis are well reproduced by numerical simulations of the
dynamical equation (4). The simulations are performed
with D1 � 20.1 and m � 20.004. For these parame-
ters, the steady-state response curve is monostable and the
modulational instability occurs at SM2 � 21.88 3 1024.
We have used two numerical codes, one based on the
Euler explicit scheme and the other on a pure implicit

FIG. 1. 3D bifurcation diagram obtained from the weakly non-
linear analysis. The solid and the dashed lines correspond,
respectively, to stable and unstable solutions. Parameters are
D1 � 20.1 and m � 20.004.
scheme, supplemented by finite difference methods [15].
The two numerical methods give the same results. The
3D solutions presented here are obtained by using periodic
boundary conditions in the three directions. Our results
are illustrated in Fig. 2, where we see that, as predicted
by the weakly nonlinear analysis, the sequence bcc–3D
hexagons– lamellae are observed. Note, however, that for
the parameters we have chosen the lamellae have already
undergone a zigzag instability.

Once the periodic solutions of Eq. (4) are characterized,
it is natural to seek 3D localized solutions of the type dis-
cussed in [16,17] in the transverse plane, and experimen-
tally observed in [18]. These 2D localized structures have
been recently obtained in the intracavity second harmonic
generation of both type-I and type-II [12,19]. In the present
problem, the 3D localized structures will be spheres in
the 3D space �x, y, t�, but will be ellipsoids in the space
�x̃, ỹ, t̃�. They are homoclinic or multisolitonic solutions
connecting the homogeneous and periodic solutions in the
domain where they coexist as stable solutions. The ho-
moclinic nature of these solutions implies that for a given
set of control parameters, the number and the space-time
distribution of 3D LS immersed in the bulk of the basic
HSS are determined by the initial condition: there exist
a large number of 3D LS, and the system selects one of
them on the basis of the initial condition. As an example,
an initial transverse profile which presents a pointlike peak

FIG. 2. Isosurface of X � Re�E2� corresponding to the 3D
periodic solutions of Eq. (4) obtained from numerical simula-
tions. Mesh number integration is 50 3 50 3 50. (a),(b) The
same bcc pattern �S � 22.0 3 1024� viewed from two different
angles. (c) 3D hexagons with S � 21.5 3 1024. (d) Lamellae
with S � 21.0 3 1024.
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FIG. 3. Isosurface of X � Re�E2� corresponding to the 3D
localized solutions of Eq. (4) obtained from numerical simu-
lations. (a) Localized light drop for D1 � 20.2 and m �
20.01 and S � 22.3 3 1023. (b) Two localized light drops
for the same parameters as in (a) but a different initial condi-
tion. (c) Localized cylinder for D1 � 20.025, m � 0.1, and
S � 1.5 3 1024. Mesh number integration is 50 3 50 3 50.

evolves toward a single light drop (see Fig. 3a). This space
and time confinement of the light is specific to the domain
where the system exhibits bistability between the bcc crys-
tal and the HSS below the instability threshold SM2. The
maximum intensity in the center of this light drop is essen-
tially the same as in the corresponding bcc crystal and the
width is approximatly half the critical wavelength given
by the linear stability analysis. This confinement of the in-
tracavity field can be interpreted as a 3D front (or switch-
ing wave) which undergoes a self-trapping (pinning effect)
between the bcc crystal and HSS which are both stable.

If initially the distance between two pointlike peak pro-
files in the transverse plane is larger than the critical wave-
length, these two perturbations evolve independently and
the final 3D LS consist of two localized light drops (see
Fig. 3b). Similarly, a single cylinder can be also generated
in the regime where the hexagonal crystal coexists with the
stable HSS (see Fig. 3c). Metastable tori have also been
observed: starting with a circle as the initial condition, a
torus emerges and persists for an unusually long time (up
to t � 750), before breaking into a cloud of localized drop.

Localized structures may therefore be useful for signal
processing since the addition or removal of a localized
sphere simply means the change from one solution to an-
other solution of Eq. (4).

It is clear that the domain of validity of the results pre-
sented in this Letter is limited by the scaling introduced to
derive the SH equation [Eq. (4)]. In 2D, it has been shown
that beyond this domain of parameters, new instabilities
appear, which modify the bifurcation sequences [20,21].
The same effect is expected if the present analysis is gen-
eralized to the complete set of Eqs. (1)–(3).
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