Violation of Time Reversal Invariance in the Decays $K_L \to \pi^+\pi^-\gamma$ and $K_L \to \pi^+\pi^-e^+e^-$

L. M. Sehgal and J. van Leusen *Institute of Theoretical Physics, RWTH Aachen, D-52056 Aachen, Germany* (Received 20 August 1999)

The origin of the large *CP*-odd and *T*-odd asymmetry observed in the decay $K_L \rightarrow \pi^+ \pi^- e^+ e^-$ is traced to the polarization properties of the photon in the decay $K_L \to \pi^+ \pi^- \gamma$. The Stokes vector of the photon $\vec{S} = (S_1, S_2, S_3)$ is studied as a function of the photon energy and found to possess *CP*violating components S_1 and S_2 which are large, despite being proportional to the ϵ parameter of the K_L wave function. The component S_2 is *T*-even and manifests itself as a circular polarization of the photon, while S_1 is *T*-odd and gives rise to the asymmetry observed in $K_L \to \pi^+\pi^-e^+e^-$. The latter survives in the limit in which all unitarity phases are absent, and represents a genuine example of time reversal symmetry breaking in a *CPT* invariant theory.

PACS numbers: 11.30.Er, 13.20.Eb, 13.40.Hq

The KTeV experiment has reported the observation of a large *CP*-violating, *T*-odd asymmetry in the decay $K_L \rightarrow$ $\pi^+\pi^-e^+e^-$ [1], in agreement with a theoretical prediction made some years ago [2,3]. In this Letter, we trace the origin of this effect to a large violation of *CP* invariance and *T* invariance in the decay $K_L \rightarrow \pi^+ \pi^- \gamma$, which is hidden in the polarization state of the photon. We explain why the effect is large, despite the fact that it stems entirely from the ϵ impurity of the K_L wave function. Our analysis demonstrates that the *T*-odd asymmetry does not vanish in the limit in which unitarity phases, expressing the non-Hermiticity of the effective Hamiltonian, are switched off, and thus represents a genuine example of time reversal noninvariance.

The decay $K_L \rightarrow \pi^+ \pi^- \gamma$ is known empirically [4] to contain a bremsstrahlung component (IB) as well as a direct emission component (DE), with a relative strength $DE/(DE + IB) = 0.68$ for photons above 20 MeV. By contrast, the decay $K_S \to \pi^+ \pi^- \gamma$ is well reproduced by pure bremsstrahlung. The simplest matrix element consistent with these features is [2]

$$
\mathcal{M}(K_S \to \pi^+ \pi^- \gamma) = e f_S \left[\frac{\epsilon \cdot p_+}{k \cdot p_+} - \frac{\epsilon \cdot p_-}{k \cdot p_-} \right],
$$

$$
\mathcal{M}(K_L \to \pi^+ \pi^- \gamma) = e f_L \left[\frac{\epsilon \cdot p_+}{k \cdot p_+} - \frac{\epsilon \cdot p_-}{k \cdot p_-} \right] \qquad (1)
$$

$$
+ e \frac{f_{\text{DE}}}{M_K^4} \epsilon_{\mu \nu \rho \sigma} \epsilon^{\mu} k^{\nu} p_+^{\rho} p_-^{\sigma},
$$

where

$$
f_L = |f_S|g_{\text{br}}, \t g_{\text{br}} = \eta_{+-}e^{i\delta_0(s=M_K^2)}, f_{\text{DE}} = |f_S|g_{M1}, \t g_{M1} = i(0.76)e^{i\delta_1(s)}.
$$
 (2)

Here the direct emission has been represented by a *CP*conserving magnetic dipole coupling g_{M1} , whose magnitude $|g_{M1}| = 0.76$ is fixed by the empirical ratio DE/IB. The phase factors appearing in g_{br} and g_{M1} are dictated by the Low theorem for bremsstrahlung, and the Watson theorem for final state interactions. The factor i in g_{M1} is a consequence of *CPT* invariance [5]. The matrix element for $K_L \rightarrow \pi^+ \pi^- \gamma$ contains simultaneously electric multipoles associated with bremsstrahlung $(E1, E3, E5, \ldots)$, which have $\mathbb{CP} = +1$, and a magnetic M1 multipole with $CP = -1$. It follows that interference of the electric and magnetic emissions should give rise to *CP* violation.

To determine the nature of this interference, we write the $K_L \rightarrow \pi^+ \pi^- \gamma$ amplitude more generally as

$$
\mathcal{M}(K_L \to \pi^+ \pi^- \gamma)
$$
\n
$$
= \frac{1}{M_K^3} \{ E(\omega, \cos \theta) [\epsilon \cdot p_+ k \cdot p_- - \epsilon \cdot p_- k \cdot p_+] + M(\omega, \cos \theta) \epsilon_{\mu \nu \rho \sigma} \epsilon^{\mu} k^{\nu} p_+^{\rho} p_-^{\sigma} \}, \tag{3}
$$

where ω is the photon energy in the K_L rest frame, and θ is the angle between π^+ and γ in the $\pi^+\pi^-$ rest frame. In the model represented by Eqs. (1) and (2), the electric and magnetic amplitudes are (omitting a common factor $e|f_S|/M_K$

$$
E = \left(\frac{2M_K}{\omega}\right)^2 \frac{g_{\text{br}}}{1 - \beta^2 \cos^2 \theta},
$$

(4)

$$
M = g_{M1},
$$

where $\beta = (1 - 4m_{\pi}^2/s)^{1/2}$, with \sqrt{s} being the $\pi^+ \pi^$ invariant mass. The Dalitz plot density, summed over photon polarizations, is

$$
\frac{d\Gamma}{d\omega \, d\cos\theta} = \frac{1}{512\pi^3} \left(\frac{\omega}{M_K}\right)^3 \beta^3 \left(1 - \frac{2\omega}{M_K}\right) \times \sin^2\theta [|E|^2 + |M|^2]. \tag{5}
$$

Clearly, there is no interference between the electric and magnetic multipoles if the photon polarization is unobserved. Therefore, any *CP* violation involving the interference of g_{br} and g_{M1} is encoded in the polarization state of the photon.

The photon polarization can be defined in terms of the density matrix

$$
\rho = \begin{pmatrix} |E|^2 & E^*M \\ EM^* & |M|^2 \end{pmatrix} = \frac{1}{2} (|E|^2 + |M|^2) [\mathbb{1} + \vec{S} \cdot \vec{\tau}],
$$
\n(6)

where $\vec{\tau} = (\tau_1, \tau_2, \tau_3)$ denotes the Pauli matrices, and \vec{S} is the Stokes vector of the photon with components

$$
S_1 = 2 \operatorname{Re}(E^* M) / (|E|^2 + |M|^2),
$$

\n
$$
S_2 = 2 \operatorname{Im}(E^* M) / (|E|^2 + |M|^2),
$$

\n
$$
S_3 = (|E|^2 - |M|^2) / (|E|^2 + |M|^2).
$$
\n(7)

The component S_3 measures the relative strength of the electric and magnetic radiation at a given point in the Dalitz plot. The effects of *CP* violation reside in the components S_1 and S_2 , which are proportional to $\text{Re}(g_{\text{br}}^*g_{M1})$ and $\text{Im}(g_{\text{br}}^*g_{M1})$, respectively. Physically, S_2 is the net circular polarization of the photon: it is proportional to the difference of $|E - iM|^2$ and $|E + iM|^2$, which are the probabilities for left-handed and right-handed radiation. Such a polarization is a *CP*-odd, *T*-even effect, which is known to be possible in decays like $K_L \rightarrow \pi^+ \pi^- \gamma$ or $K_{LS} \rightarrow \gamma \gamma$ whenever there is *CP* violation accompanied by unitarity phases [5,6]. To understand the significance of S_1 , we examine the dependence of the $K_L \rightarrow \pi^+ \pi^- \gamma$ decay on the angle ϕ between the polarization vector $\vec{\epsilon}$ and the unit vector \vec{n}_{π} normal to the decay plane [we choose coordinates such that $\vec{k} = (0, 0, k)$, $\vec{n}_{\pi} = (1, 0, 0)$, $\vec{p}_+ = (0, p \sin\theta, p \cos\theta), \text{ and } \vec{\epsilon} = (\cos\phi, \sin\phi, 0)$:

$$
\frac{d\Gamma}{d\omega \, d\cos\theta \, d\phi} \sim |E\sin\phi - M\cos\phi|^2,
$$

$$
\sim 1 - [S_3\cos 2\phi + S_1\sin 2\phi]. \tag{8}
$$

Notice that the Stokes parameter *S*¹ appears as a coefficient of a term $sin2\phi$ which changes sign under *CP* as well as *T*. Thus *S*¹ is a measure of a *CP*-odd, *T*-odd correlation [7]. The essential idea of Refs. [2,3] is to use in place of $\vec{\epsilon}$ the vector \vec{n}_l normal to the plane of the Dalitz pair in the reaction $K_L \rightarrow \pi^+ \pi^- \gamma^* \rightarrow \pi^+ \pi^- e^+ e^-$. This motivates the study of the distribution $d\Gamma/d\phi$ in the decay $K_L \rightarrow \pi^+ \pi^- e^+ e^-$, where ϕ is the angle between the $\pi^+\pi^-$ and e^+e^- planes.

To obtain a quantitative idea of the magnitude of *CP* violation in $K_L \rightarrow \pi^+ \pi^- \gamma$, we show in Fig. 1a the three components of the Stokes vector as a function of the photon energy. These are calculated from the amplitudes (4) using weighted averages of $|E|^2$, $|M|^2$, E^*M , and EM^* over $\cos\theta$ [8]. The values of S_1 and S_2 are remarkably large, considering that the only assumed source of *CP* violation is the ϵ impurity in the K_L wave function ($\epsilon = \eta_{+-}$). Clearly the factor $(2M_K/\omega)^2$ in *E* enhances it to a level that makes it comparable to the *CP*-conserving amplitude *M*. This is evident from the behavior of the parameter *S*3, which swings from a dominant electric behavior at low ω (*S*₃ \approx 1) to a dominant magnetic behavior at large ω

FIG. 1. (a) Stokes parameters of photon in $K_L \rightarrow \pi^+ \pi^- \gamma$; (b) Hermitian limit $\delta_0 = \delta_1 = 0$, arg $\epsilon = \pi/2$; (c) CPinvariant limit $\epsilon \to 0$.

 $(S_3 \approx -1)$, with a zero in the region $\omega \approx 60$ MeV. The essential difference between the T -odd parameter S_1 and the T -even parameter S_2 comes to light when we compare their behavior in the "Hermitian" limit: this is the limit in which the *T* matrix or effective Hamiltonian governing the decay $K_L \rightarrow \pi^+ \pi^- \gamma$ is taken to be Hermitian, all unitarity phases related to real intermediate states being dropped. This limit is realized by taking δ_0 , $\delta_1 \rightarrow 0$, and $\arg \epsilon \to \pi/2$. The last of these follows from the fact that ϵ may be written as

$$
\epsilon = \frac{\Gamma_{12} - \Gamma_{21} + i(M_{12} - M_{21})}{\gamma_S - \gamma_L - 2i(m_L - m_S)}, \qquad (9)
$$

where $H_{\text{eff}} = M - i\Gamma$ is the mass matrix of the K^0 - \overline{K}^0 system. The Hermitian limit obtains when Γ_{12} = $\Gamma_{21} = \gamma_S = \gamma_L = 0$. As seen from Fig. 1b, S_2 vanishes in this limit, but *S*¹ survives, as befits a *CP*-odd, *T*-odd observable. This difference in behavior is obvious from the fact that in the Hermitian limit

$$
S_1 \sim \text{Re}(g_{\text{br}}^* g_{M1}) \sim \sin(\phi_{+-} + \delta_0 - \delta_1) \to 1,
$$

$$
S_2 \sim \text{Im}(g_{\text{br}}^* g_{M1}) \sim \cos(\phi_{+-} + \delta_0 - \delta_1) \to 0.
$$
 (10)

Figure 1c shows what happens in the *CP*-invariant limit $\epsilon \rightarrow 0$: the parameters *S*₁, *S*₂ collapse to zero, while *S*₃ attains the uniform value -1 . It is clear that we are dealing here with an exceptional situation in which a *CP* impurity of a few parts in a thousand in the *KL* wave function is magnified into a huge *CP*-odd, *T*-odd effect in the photon polarization.

We can now examine how these large *CP*-violating effects are transported to the decay $K_L \rightarrow \pi^+ \pi^- e^+ e^-$. The matrix element for $K_L \rightarrow \pi^+ \pi^- e^+ e^-$ can be written as [2,3]

$$
\mathcal{M}(K_L \to \pi^+ \pi^- e^+ e^-) = \mathcal{M}_{\text{br}} + \mathcal{M}_{\text{mag}} + \mathcal{M}_{\text{SP}}.
$$
 (11)

Here $\mathcal{M}_{\rm br}$ and $\mathcal{M}_{\rm mag}$ are the conversion amplitudes associated with the bremsstrahlung and *M*1 parts of the $K_L \rightarrow$ $\pi^+\pi^-\gamma$ amplitude. In addition, we have introduced an amplitude \mathcal{M}_{CR} denoting $\pi^+\pi^-$ production in a $J=0$ state (not possible in a real radiative decay), as well as an amplitude \mathcal{M}_{SD} associated with the short-distance interaction $s \rightarrow de^+e^-$. The last of these turns out to be numerically negligible because of the smallness of the Cabibbo-Kobayashi-Maskawa factor $V_{ts}V_{td}^*$. The *s*-wave amplitude \mathcal{M}_{CR} , if approximated by the K^0 charge radius diagram, makes a small $(\sim 1\%)$ contribution to the decay rate. Thus the dominant features of the decay are due to the conversion amplitude $\mathcal{M}_{\rm br} + \mathcal{M}_{\rm mag}$.

Within such a model, one can calculate the differential decay rate in the form [3]

$$
d\Gamma = I(s_{\pi}, s_{l}, \cos\theta_{l}, \cos\theta_{\pi}, \phi) \times ds_{\pi} ds_{l} d \cos\theta_{l} d \cos\theta_{\pi} d \phi.
$$
 (12)

Here s_{π} (s_l) is the invariant mass of the pion (lepton) pair, and θ_{π} (θ_{l}) is the angle of the $\pi^{+}(l^{+})$ in the $\pi^{+}\pi^{-}(l^{+}l^{-})$ rest frame, relative to the dilepton (dipion) momentum vector in that frame. The all-important variable ϕ is defined in terms of unit vectors constructed from the pion momenta \vec{p}_{\pm} and lepton momenta \vec{k}_{\pm} in the K_L rest frame:

$$
\vec{n}_{\pi} = (\vec{p}_{+} \times \vec{p}_{-})/|\vec{p}_{+} \times \vec{p}_{-}|,
$$
\n
$$
\vec{n}_{l} = (\vec{k}_{+} \times \vec{k}_{-})/|\vec{k}_{+} \times \vec{k}_{-}|,
$$
\n
$$
\vec{z} = (\vec{p}_{+} + \vec{p}_{-})/|\vec{p}_{+} + \vec{p}_{-}|,
$$
\n
$$
\sin \phi = \vec{n}_{\pi} \times \vec{n}_{l} \cdot \vec{z}(CP = -, T = -),
$$
\n
$$
\cos \phi = \vec{n}_{\pi} \cdot \vec{n}_{l}(CP = +, T = +).
$$
\n(13)

In Ref. [2], an analytic expression was derived for the 3 dimensional distribution $d\Gamma/ds_l ds_\pi d\phi$, which has been used in the Monte Carlo simulation of this decay. In Ref. [3], a formalism was presented for obtaining the fully differential decay function $I(s_\pi, s_l, \cos\theta_l, \cos\theta_\pi, \phi)$.

The principal results of the theoretical model discussed in [2,3] are as follows:

(1) Branching ratio: This was calculated to be [2]

$$
B(K_L \to \pi^+ \pi^- e^+ e^-) = (1.3 \times 10^{-7})_{br} + (1.8 \times 10^{-7})_{M1} + (0.04 \times 10^{-7})_{CR}
$$

$$
\approx 3.1 \times 10^{-7}, \qquad (14)
$$

which agrees well with the result $(3.32 \pm 0.14 \pm 0.28) \times$ 10^{-7} measured in the KTeV experiment [1]. (A preliminary branching ratio 2.9 \times 10⁻⁷ has been reported by the NA48 Collaboration [9].)

(2) Asymmetry in ϕ distribution: The model predicts a distribution of the form

$$
\frac{d\Gamma}{d\phi} \sim 1 - (\Sigma_3 \cos 2\phi + \Sigma_1 \sin 2\phi) \tag{15}
$$

which is in complete analogy with the distribution given by Eq. (8) in the case of $K_L \rightarrow \pi^+ \pi^- \gamma$. The last term is *CP* and *T* violating, and produces an asymmetry

$$
\mathcal{A} = \frac{(\int_0^{\pi/2} - \int_{\pi/2}^{\pi} + \int_{\pi}^{3\pi/2} - \int_{3\pi/2}^{2\pi} \frac{d\Gamma}{d\phi} d\phi}{(\int_0^{\pi/2} + \int_{\pi/2}^{\pi} + \int_{\pi}^{3\pi/2} + \int_{3\pi/2}^{2\pi} \frac{d\Gamma}{d\phi} d\phi} = -\frac{2}{\pi} \Sigma_1.
$$
\n(16)

The predicted value [2,3] is

$$
|\mathcal{A}| = 15\% \sin[\phi_{+-} + \delta_0(M_K^2) - \overline{\delta}_1] \approx 14\% \quad (17)
$$

to be compared with the KTeV result [1]

$$
|\mathcal{A}|_{\text{KTeV}} = (13.6 \pm 2.5 \pm 1.2)\% \,. \tag{18}
$$

The parameters Σ_3 and Σ_1 are calculated to be Σ_3 = -0.133 , $\Sigma_1 = 0.23$. The ϕ distribution measured by KTeV agrees with this expectation (after acceptance corrections made in accordance with the model). It should be noted that the sign of Σ_1 (and of the asymmetry \mathcal{A}) depends on whether the numerical coefficient in g_{M1} is taken to be ± 0.76 or -0.76 . The data support the positive sign chosen in Eq. (2).

(3) Variation of $\Sigma_{1,3}$ with s_π : As shown in Fig. 2, the parameters Σ_1 and Σ_3 have a variation with s_π that is in close correspondence with the variation of S_1 and *S*₃. (Recall that the photon energy ω in $K_L \rightarrow \pi^+ \pi^- \gamma$ can be expressed in terms of s_{π} : $s_{\pi} = M_K^2 - 2M_K\omega$.) In particular, the zero of Σ_3 and the zero of S_3 occur at almost the same value of s_{π} . The similarity in the shape of Σ_1 and S_1 confirms the assertion that the asymmetry seen in $K_L \rightarrow \pi^+ \pi^- e^+ e^-$ is related to the *CP*-odd, *T*-odd component of the Stokes vector in $K_L \rightarrow \pi^+ \pi^- \gamma$. The difference in scale is a measure of the analyzing power of the Dalitz pair process, viewed as a probe of the photon polarization.

FIG. 2. Parameters Σ_1 and Σ_3 describing the ϕ distribution in $K_L \rightarrow \pi^+ \pi^- e^+ e^-$, compared with the Stokes parameters S_1 and S_3 in $K_L \rightarrow \pi^+ \pi^- \gamma$.

Finally, we remark that our analysis takes for granted the validity of *CPT* invariance in the decays $K_L \rightarrow \pi^+ \pi^- \gamma$ and $K_L \rightarrow \pi^+ \pi^- e^+ e^-$. If the assumption of *CPT* invariance is relaxed, the asymmetry observed in the KTeV experiment may be interpreted as some combination of *T* and *CPT* violation [10]. From the point of view of the present paper, the effect is understandable in a *CPT*invariant framework, and follows inexorably from the empirical features of the decays $K_{L,S} \rightarrow \pi^{+}\pi^{-}\gamma$ mentioned at the outset.

Some of the ideas of this paper were presented by L. M. S. at the Kaon 99 Conference in Chicago [11].

[1] KTeV Collaboration, A. Alavi-Harati *et al.,* hep-ex/ 9908020, submitted to Phys. Rev. Lett.; A. Ledovskoy, in Proceedings of the Kaon 99 Conference (to be published); M. Arenton, in *Proceedings of the Heavy Quark 98 Conference,* edited by H. W. K. Cheung and J. N. Butler (American Institute of Physics, New York, 1999), pp. 135–142.

- [2] L. M. Sehgal and M. Wanninger, Phys. Rev. D **46**, 1035 (1992); **46**, 5209(E) (1992).
- [3] P. Heiliger and L. M. Sehgal, Phys. Rev. D **48**, 4146 (1993); **60**, 079902(E) (1999).
- [4] E. J. Ramberg *et al.,* Fermilab Report No. Fermilab-Conf-91/258, 1991; Phys. Rev. Lett. **70**, 2525 (1993).
- [5] T. D. Lee and C. S. Wu, Annu. Rev. Nucl. Sci. **16**, 511 (1966); G. Costa and P. K. Kabir, Nuovo Cimento A **61**, 564 (1967); L. M. Sehgal and L. Wolfenstein, Phys. Rev. **162**, 1362 (1967).
- [6] L. M. Sehgal, Phys. Rev. D **4**, 267 (1971).
- [7] The vectors appearing in the $K_L \rightarrow \pi^+ \pi^- \gamma$ amplitude transform under *CP* and *T* as $(\vec{k}, \vec{p}_{\pm}, \vec{\epsilon}) \stackrel{CP}{\rightarrow}$ $(\vec{r}, \vec{k}, -\vec{p}_{\pm}, \vec{\epsilon}), \quad (\vec{k}, \vec{p}_{\pm}, \vec{\epsilon}) \stackrel{T}{\rightarrow} (-\vec{k}, -\vec{p}_{\pm}, -\vec{\epsilon})$. Thus $\sin \phi = \vec{n}_{\pi} \times \vec{\epsilon} \cdot \hat{k}$ has $CP = +$, $T = +$, while $\cos \phi = \vec{n}_{\pi} \cdot \vec{\epsilon}$ has $CP = -$, $T = -$.
- [8] In our numerical work we take $\phi_{+-} = 43^{\circ}$, $\delta_0(M_K^2) = 40^{\circ}$, and an average value $\overline{\delta_1} = 10^{\circ}$. We have also carried out a calculation which includes the *s* dependence of $\delta_1(s)$, as well as the measured form factor $g_{M1}(s)$ [1,4] in place of the constant value $g_{M1} = 0.76$. The curves in Fig. 1a are mildly affected, the zero in S_3 and the maximum in S_1 , S_2 shifting to about 50 MeV.
- [9] NA48 Collaboration, S. Wronka *et al.,* in Proceedings of the Kaon 99 Conference (to be published).
- [10] L. Wolfenstein, Phys. Rev. Lett. **83**, 911 (1999); L. Alvarez-Gaume *et al.,* hep-ph/9903458; J. Ellis and N. E. Mavromatos, hep-ph/9903386; I. I. Bigi and A. I. Sanda, hep-ph/9904484.
- [11] L.M. Sehgal, hep-ph/9908338.