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M odulus Stabilization with Bulk Fields
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We propose a mechanism for stabilizing the size of the extra dimension in the Randall-Sundrum
scenario. The potential for the modulus field that sets the size of the fifth dimension is generated by
a bulk scalar with quartic interactions localized on the two 3-branes. The minimum of this potential
yields a compactification scale that solves the hierarchy problem without fine-tuning of parameters.

PACS numbers: 11.10.Kk, 04.50.+h, 11.25.Mj

The standard model for strong, weak, and electromagsimilar to Eqg. (1) are presented in Ref. [6]. In Ref. [7],
netic interactions based on the gauge group(3$X it is shown how this model may be obtained from string
SU(2) X U(1) has been extremely successful in accounttheory compactifications.
ing for experimental observations. However, it has sev- The nonfactorizable geometry of Eq. (1) has several im-
eral unattractive features that suggest new physics beyormbrtant consequences. For instance, the four-dimensional
that incorporated in this model. One of these is the gaugPlanck mass is given in terms of the fundamental sgfle
hierarchy problem, which refers to the vast disparity be-by
tween the weak scale and the Planck scale. In the context 3
of the minimal standard model, this hierarchy of scales is M2 = M- [1 — ¢~ 2krem] )
unnatural since it requires a fine-tuning order by order in Pl k ’
perturbation theory. A number of extensions have been )
proposed to solve the hierarchy problem, notably techniSO that, even for largér., Mp, is of orderM. Because of
color [1] (or dynamical symmetry breaking) and low en-the exponential factor in the spacetime metric, af|e|.d con-
ergy supersymmetry [2]. finedto thg 3-brane @ = 7 with mass parametet, will

Recently, it has been suggested that large compactifidé@ve physical masage """ and forkr, around 12, the
extra dimensions may provide an alternative solution tdveak scale is dynamically generated from a fundamental
the hierarchy problem [3]. In these models, the observe§caleM whichis on the order of the Planck mass. Further-
Planck massMp, is related toM, the fundamental mass More, Kaluza-Klein gravitational modes have TeV scale
scale of the theory, by, = M"*2V,, whereV, is the Mass splittings and couplings [8]. Slmllarly, a bulk fleld
volume of the additional compactified dimensions.v)f ~ With mass on the order d¥ has low-lying Kaluza-Klein
is large enoughM can be of the order of the weak excitations th_at res_lde primarily n_eafr = 7 and hence,
scale. Unfortunately, unless there are several large extffom a four-dimensional perspective, have masses on the

dimensions, a newhierarchy is introduced between th@rder of the weak scale [9]. _ .
compactification scaley, = anl/n’ andM. In the scenario presented in Ref. [4], is associated

Randall and Sundrum [4] have proposedahigherdimenwith the vacuum expectation value of a massless four-

sional scenario to solve the hierarchy problem that doeg'ont]:rr&is;?r;ar: dsgglr?sfeﬂﬁgﬁtwwils nrgtoggl[lé?n:ilﬁédd r;)as tﬁ:ro
not require large extra dimensions. This model consist . d T : y .
of a spacetime with a singl§! /Z, orbifold extra dimen- ynamics of the_model. For thls scenario to l_)e relevant, _|t
sion. Three-branes with opposite tensions reside at thg necessary to find a mechanism for generating a potential

orbifold fixed points and together with a finely tuned cos-to stap|l|ze the_value OP.C' Here we show that such a
mological constant serve as sources for five—dimensionﬁmennal_ can arse _classmally from the presence of a bulk
gravity. The resulting spacetime metric contains a redshi calar with interaction terms that are localized to the two

: : . -branes [10]. The minimum of this potential can be
factor which depends exponentially on the radiusf the d . . :
compactified dimension: arranged to yield a value @, ~ 10 without fine-tuning

of parameters.
ds? = e_zkr"ld’lnw,dx“dx” — r2dg?, (1) Imagine adding to the model a scalar fiekdwith the
following bulk action:
wherek is a parameter which is assumed to be of order
M, x* are Lorentz coordinates on the four-dimensional , 1 4 7 AB 210
surfaces of constanp, and —7 = ¢ = 7 with (x, ¢) Sp =7 fd xf_w dp G (G0, Rop® — m*D?),
and (x, —¢) identified. The two 3-branes are located at 3)
¢ = 0and¢ = . A similar scenario to the one described
in Ref. [4] is that of Horava and Witten [5], which arises where G, with A,B = u, ¢ is given by Eqg. (1). We
within the context ofM theory. Supergravity solutions also include interaction terms on the hidden and visible

4922 0031-900799/83(24)/4922(4)$15.00 © 1999 The American Physical Society



VOLUME 83, NUMBER 24

PHYSICAL REVIEW LETTERS

13 DECEMBER 1999

branes (at ¢ = 0 and ¢ = =, respectively) given by
Sp=— f d*x J=gn M(®* — v})?, 4
and
Sy = —fd4x¢——&)\u(c1>2 - v2)%, (5)

where g, and g, are the determinants of the induced
metric on the hidden and visible branes, respectively.
Note that ® and v, have mass dimension 3/2, while
Ay, have mass dimension —2. Kinetic terms for the scalar
field can be added to the brane actions without changing
our results. The terms on the branes cause ® to develop
a ¢ -dependent vacuum expectation value ®(¢) which is
determined classically by solving the differential equation

1
0= - 2 8¢(e_4”8¢CD) + m?e D
T de i, (@2 — p2) 28 )
rC
)
+ 4e 4N, D(P? — v)) @, (6)

where o(¢p) = kr.|¢p|. Away from the boundaries at
¢ = 0, 7, this equation has the general solution

D(¢p) = X[Ae” + Be 7], (7)

with » = /4 + m2/k2. Putting this solution back into
the scalar field action and integrating over ¢ yields an
effective four-dimensional potential for r. which has the
form

Vo(re) = k(v + 2)A%(e?"kre™ — 1)
+ k(v — 2)B*(1 — ¢ 2vkrem)

+ Aye KT [D(7)? — 2 + A [P(0)* — vilh

(8

The unknown coefficients A and B are determined by

imposing appropriate boundary conditions on the 3-

branes. We obtain these boundary conditions by inserting

Eqg. (7) into the eguations of motion and matching the
delta functions:

k[(2 + v)A + (2 — v)B] — 24, ®(0) [®(0)> — vi] = 0,

9)

ke2er7T[(2 + V)ever.qrA + (2 _ V)e_Vkr‘ﬂB] +
24, @ (7) [®(7)* — v2] = 0.
(10)

Rather than solve these equations in general, we con-
sider the simplified case in which the parameters A, and

A, are large. It is evident from Eq. (8) that in this
limit, it is energetically favorable to have ®(0) = v, and
®(7) = v, [11]. Thus, from Eq. (7) we get for large kr.

A= vve*(2+v)kr(77 _ vh672vkr,.77’ (11)

B = Uh(l + e*21/kr,,77') . UU€*(2+V)k}’,»7T’ (12)

where subleading powers of exp(—kr.m) have been
neglected. Now suppose that m/k < 1 so that v =
2 + €, with € = m?/4k> a small quantity. In the large
kr. limit, the potential becomes

Vo (re) = kevi + dke T (y, — vhe_Ek"”)2<l + %)

—(4+e)kr(.77(2vv _ vhe—ekrt.rr) , (13)

— kevye

where terms of order €> are neglected (but ekr. is not
treated as small). Ignoring terms proportional to e, this
potential has a minimum at

kr, = <i> L |n[ﬂ] (14)

m) m? vy

With In(v,/v,) of order unity, we need only m?/k?* of
order 1/10 to get kr. ~ 10. Clearly, no extreme fine-
tuning of parametersis required to get the right magnitude
for kr.. For example, taking v, /v, = 1.5and m/k = 0.2
yields kr. = 12.

The stress tensor for the scalar field can be written as
TAB = T8 + TAB wherefor large kr.

k2
00 = 5[4 + €) (v, — vye )
2r?

% e*(4+e)(kr,.77*0') _ theieg]z, (15)

k> -
T = 5 (4 + €) vy — vie )

X e—(4+e)(kr‘.77'—a') _ Evhe_e”]z,

(16)
and
2k%e _ _ _
T;/;(ﬁ ~ _ rcz [(Uv — vpe ekr,.ﬂ')e (4+e) (krem—o)
+ ve 7, (17)
Trl:;“/ ~ _2](26201]"“}6[(1)1, _ vhe—ekr(.rr)e—(4+e)(krcn'—rr)
+ vpe 7P (18)

As long as vi/M? and v2/M? are small, T4 can be
neglected in comparison to the stress tensor induced by
the bulk cosmological constant. It is therefore safe to ig-
nore the influence of the scalar field on the background
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geometry for the computation of V(r.). A similar crite-
rion ensures that the stress tensor induced by the bulk cos-
mologica constant is dominant for kr. ~ 1.

One might worry that the validity of Egs. (13) and (14)
requires unnaturally large values of A, and A,. We will
check that this is not the case by computing the leading
1/ A correction to the potential. To obtain this correction,
we linearize Egs. (9) and (10) about the large A solution.
Neglecting terms of order e, the vacuum expectation
values (VEVs) are shifted by

SO0) = — e WrknT(y — ek (19)
/\hvh
k

8D(m) = — 5 (v, — v ), 20)

and thus (neglecting subleading exponentials of kr.)

k
SA = _A — e*(4+e)krrﬂ'(vv _ Uhefekrm'), (21)

k k
_ _—@+e)kr.m _ —ekr.m
dB=c¢ (vy — vype )[Avv% + )uhv;%]
(22)

Hence, the correction to the potentia is
Ak

_ 5 e74kr077(vv
Ayvz

SVo(re) = — vpe kT2 (23)
This has the same form as the leading e — 0 behavior
of Eq. (13) and therefore does not significantly affect the
location of the minimum.

Note that the forms of the potentials in Egs. (13) and
(23) are vdid only for large kr.. For smal kr., the
potential becomes

_ 2
Vol = e =2l (24
mre
when terms of order € and 1/A are neglected. The
singularity as r. — 0 is removed by finite A corrections
which become large for smal r., and yield

Andy 2 2\2
— - . 2
Wl - ) 25

In the scenario of Randall and Sundrum, the action isthe
sum of the five-dimensional Einstein-Hilbert action plus
world-volume actions for the 3-branes:

Ve (0) =

S = fd4xd¢ VG[—A + 2M°R]
— fd“x«/—gh Vi, — fd“x V=& Vy,. (26)
For Eqg. (1) to be a solution of the field equations that
follow from Eq. (26), one must arrange V, = =V, =

24M3k, where A = —24M°>k*. This amounts to having
a vanishing four-dimensional cosmological constant plus
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an additiona fine-tuning which causes the r. potentia to
vanish. However, imagine perturbing the 3-brane tensions
by small amounts [12]:

Vo — V, + 8V,. (28)

Aslong as|6V,| and |8V, | are small compared to — A /k,
these shifts in the brane tensions induce the following
potentia for r.:

Valre) = 8V + 8V,e #rem, (29)

For 6V, small, the sum of potentials Vg (r.) + Va(r.) has
a minimum for large kr.. The effective four-dimensional
cosmological constant can be tuned to zero by adjusting the
value of 8V,. For 8§V, < kev? the minimum is global,
while for 8V, > kev2 the minimum is a false vacuum
since r. — o is a configuration of lower energy.

We have seen that a bulk scalar with a ¢-dependent
VEV can generate a potentia to stabilize r. without hav-
ing to fine-tune the parameters of the model (there is
till one fine-tuning associated with the four-dimensional
cosmological constant, however). This mechanism for
stabilizing r. is areasonably generic effect caused by the
presence of a ¢-dependent vacuum bulk field configura-
tion. It may be worthwhile to work out other features of
the specific toy model presented here, such as the back re-
action of the scalar field and shifts of the brane tensions on
the spacetime geometry. Also, the use of the large A limit
was purely for convenience and the finite A case could be
considered.

With r. dstabilized, effective field theory reasoning
suggests that the cosmology associated with this scenario
should be standard for temperatures below the weak
scale. However, for temperatures above this scale, it will
be different (see Ref.[13]) from the usual Friedmann
cosmology.

The scenario presented in Ref. [4] represents an attrac-
tive solution to the hierarchy puzzle. However, it aso
has some features that are less appealing than the stan-
dard model with minimal particle content. In this sce-
nario, higher dimension operators are suppressed by the
weak scale and unlike the standard model, where the sup-
pression can be by powers of the grand unified theory
scale, there is no explanation for the smallness of neutrino
masses and the long proton lifetime based simply on di-
mensional analysis.
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