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Modulus Stabilization with Bulk Fields
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We propose a mechanism for stabilizing the size of the extra dimension in the Randall-Sun
scenario. The potential for the modulus field that sets the size of the fifth dimension is generat
a bulk scalar with quartic interactions localized on the two 3-branes. The minimum of this pote
yields a compactification scale that solves the hierarchy problem without fine-tuning of parameter
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The standard model for strong, weak, and electrom
netic interactions based on the gauge group SU�3� 3

SU�2� 3 U�1� has been extremely successful in accou
ing for experimental observations. However, it has se
eral unattractive features that suggest new physics bey
that incorporated in this model. One of these is the gau
hierarchy problem, which refers to the vast disparity b
tween the weak scale and the Planck scale. In the con
of the minimal standard model, this hierarchy of scales
unnatural since it requires a fine-tuning order by order
perturbation theory. A number of extensions have be
proposed to solve the hierarchy problem, notably tech
color [1] (or dynamical symmetry breaking) and low e
ergy supersymmetry [2].

Recently, it has been suggested that large compacti
extra dimensions may provide an alternative solution
the hierarchy problem [3]. In these models, the observ
Planck massMPl is related toM, the fundamental mass
scale of the theory, byM2

Pl � Mn12Vn, whereVn is the
volume of the additional compactified dimensions. IfVn

is large enough,M can be of the order of the wea
scale. Unfortunately, unless there are several large e
dimensions, a new hierarchy is introduced between
compactification scale,mc � V

21�n
n , andM.

Randall and Sundrum [4] have proposed a higher dim
sional scenario to solve the hierarchy problem that d
not require large extra dimensions. This model cons
of a spacetime with a singleS1�Z2 orbifold extra dimen-
sion. Three-branes with opposite tensions reside at
orbifold fixed points and together with a finely tuned co
mological constant serve as sources for five-dimensio
gravity. The resulting spacetime metric contains a reds
factor which depends exponentially on the radiusrc of the
compactified dimension:

ds2 � e22krc jfjhmndxmdxn 2 r2
c df2, (1)

wherek is a parameter which is assumed to be of ord
M, xm are Lorentz coordinates on the four-dimension
surfaces of constantf, and 2p # f # p with �x, f�
and �x, 2f� identified. The two 3-branes are located
f � 0 andf � p . A similar scenario to the one describe
in Ref. [4] is that of Horava and Witten [5], which arise
within the context ofM theory. Supergravity solutions
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similar to Eq. (1) are presented in Ref. [6]. In Ref. [7
it is shown how this model may be obtained from stri
theory compactifications.

The nonfactorizable geometry of Eq. (1) has several
portant consequences. For instance, the four-dimensi
Planck mass is given in terms of the fundamental scaleM
by

M2
Pl �

M3

k
�1 2 e22krcp� , (2)

so that, even for largekrc, MPl is of orderM. Because of
the exponential factor in the spacetime metric, a field c
fined to the 3-brane atf � p with mass parameterm0 will
have physical massm0e2krcp and forkrc around 12, the
weak scale is dynamically generated from a fundame
scaleM which is on the order of the Planck mass. Furth
more, Kaluza-Klein gravitational modes have TeV sc
mass splittings and couplings [8]. Similarly, a bulk fie
with mass on the order ofM has low-lying Kaluza-Klein
excitations that reside primarily nearf � p and hence,
from a four-dimensional perspective, have masses on
order of the weak scale [9].

In the scenario presented in Ref. [4],rc is associated
with the vacuum expectation value of a massless fo
dimensional scalar field. This modulus field has ze
potential and consequentlyrc is not determined by the
dynamics of the model. For this scenario to be relevan
is necessary to find a mechanism for generating a pote
to stabilize the value ofrc. Here we show that such
potential can arise classically from the presence of a b
scalar with interaction terms that are localized to the t
3-branes [10]. The minimum of this potential can
arranged to yield a value ofkrc � 10 without fine-tuning
of parameters.

Imagine adding to the model a scalar fieldF with the
following bulk action:

Sb �
1
2

Z
d4x

Z p

2p
df

p
G �GAB≠AF≠BF 2 m2F2� ,

(3)

where GAB with A, B � m, f is given by Eq. (1). We
also include interaction terms on the hidden and visi
© 1999 The American Physical Society
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branes (at f � 0 and f � p , respectively) given by

Sh � 2
Z

d4x
p

2gh lh�F2 2 y2
h�2, (4)

and

Sy � 2
Z

d4x
p

2gy ly�F2 2 y2
y�2, (5)

where gh and gy are the determinants of the induced
metric on the hidden and visible branes, respectively.
Note that F and yy,h have mass dimension 3�2, while
ly,h have mass dimension 22. Kinetic terms for the scalar
field can be added to the brane actions without changing
our results. The terms on the branes cause F to develop
a f-dependent vacuum expectation value F�f� which is
determined classically by solving the differential equation

0 � 2
1
r2

c
≠f�e24s≠fF� 1 m2e24sF

1 4e24slyF�F2 2 y2
y�

d�f 2 p�
rc

1 4e24slhF�F2 2 y2
h�

d�f�
rc

, (6)

where s�f� � krcjfj. Away from the boundaries at
f � 0, p , this equation has the general solution

F�f� � e2s�Aens 1 Be2ns� , (7)

with n �
p

4 1 m2�k2. Putting this solution back into
the scalar field action and integrating over f yields an
effective four-dimensional potential for rc which has the
form

VF�rc� � k�n 1 2�A2�e2nkrcp 2 1�

1 k�n 2 2�B2�1 2 e22nkrcp�

1 lye24krcp�F�p�2 2 y2
y�2 1 lh�F�0�2 2 y2

h�2.

(8)

The unknown coefficients A and B are determined by
imposing appropriate boundary conditions on the 3-
branes. We obtain these boundary conditions by inserting
Eq. (7) into the equations of motion and matching the
delta functions:

k��2 1 n�A 1 �2 2 n�B� 2 2lhF�0� �F�0�2 2 y2
h� � 0 ,

(9)

ke2krcp ��2 1 n�enkrcpA 1 �2 2 n�e2nkrcpB� 1

2lyF�p� �F�p�2 2 y2
y� � 0 .

(10)

Rather than solve these equations in general, we con-
sider the simplified case in which the parameters lh and
ly are large. It is evident from Eq. (8) that in this
limit, it is energetically favorable to have F�0� � yh and
F�p� � yy [11]. Thus, from Eq. (7) we get for large krc

A � yye2�21n�krcp 2 yhe22nkrcp , (11)

B � yh�1 1 e22nkrcp� 2 yye2�21n�krcp , (12)

where subleading powers of exp�2krcp� have been
neglected. Now suppose that m�k ø 1 so that n �
2 1 e, with e � m2�4k2 a small quantity. In the large
krc limit, the potential becomes

VF�rc� � key2
h 1 4ke24krcp�yy 2 yhe2ekrcp�2

µ
1 1

e

4

∂

2 keyhe2�41e�krcp�2yy 2 yhe2ekrcp � , (13)

where terms of order e2 are neglected (but ekrc is not
treated as small). Ignoring terms proportional to e, this
potential has a minimum at

krc �

µ
4
p

∂
k2

m2 ln

∑
yh

yy

∏
. (14)

With ln�yh�yy� of order unity, we need only m2�k2 of
order 1�10 to get krc � 10. Clearly, no extreme fine-
tuning of parameters is required to get the right magnitude
for krc. For example, taking yh�yy � 1.5 and m�k � 0.2
yields krc � 12.

The stress tensor for the scalar field can be written as
TAB

s � TAB
k 1 TAB

m , where for large krc

T
ff
k � 2

k2

2r2
c

��4 1 e� �yy 2 yhe2ekrcp �

3 e2�41e� �krcp2s� 2 eyhe2es�2, (15)

T
mn
k �

k2

2
e2shmn��4 1 e� �yy 2 yhe2ekrcp �

3 e2�41e� �krcp2s� 2 eyhe2es�2,

(16)

and

Tff
m � 2

2k2e

r2
c

��yy 2 yhe2ekrcp �e2�41e� �krcp2s�

1 yhe2es�2, (17)

Tmn
m � 22k2e2shmne��yy 2 yhe2ekrcp �e2�41e� �krcp2s�

1 yhe2es�2. (18)

As long as y
2
h�M3 and y2

y�M3 are small, TAB
s can be

neglected in comparison to the stress tensor induced by
the bulk cosmological constant. It is therefore safe to ig-
nore the influence of the scalar field on the background
4923
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geometry for the computation of V �rc�. A similar crite-
rion ensures that the stress tensor induced by the bulk cos-
mological constant is dominant for krc � 1.

One might worry that the validity of Eqs. (13) and (14)
requires unnaturally large values of lh and ly . We will
check that this is not the case by computing the leading
1�l correction to the potential. To obtain this correction,
we linearize Eqs. (9) and (10) about the large l solution.
Neglecting terms of order e, the vacuum expectation
values (VEVs) are shifted by

dF�0� �
k

lhy
2
h

e2�41e�krcp �yy 2 yhe2ekrcp � , (19)

dF�p� � 2
k

lyy2
y

�yy 2 yhe2ekrcp� , (20)

and thus (neglecting subleading exponentials of krcp)

dA � 2
k

lyy2
y

e2�41e�krcp�yy 2 yhe2ekrcp� , (21)

dB � e2�41e�krcp �yy 2 yhe2ekrcp �
∑

k
lyy2

y

1
k

lhy
2
h

∏
.

(22)

Hence, the correction to the potential is

dVF�rc� � 2
4k2

lyy2
y

e24krcp �yy 2 yhe2ekrcp �2. (23)

This has the same form as the leading e ! 0 behavior
of Eq. (13) and therefore does not significantly affect the
location of the minimum.

Note that the forms of the potentials in Eqs. (13) and
(23) are valid only for large krc. For small krc, the
potential becomes

VF�rc� �
�yy 2 yh�2

prc
(24)

when terms of order e and 1�l are neglected. The
singularity as rc ! 0 is removed by finite l corrections
which become large for small rc, and yield

VF�0� �
lhly

lh 1 ly

�y2
y 2 y2

h�2. (25)

In the scenario of Randall and Sundrum, the action is the
sum of the five-dimensional Einstein-Hilbert action plus
world-volume actions for the 3-branes:

S �
Z

d4x df
p

G �2L 1 2M3R�

2
Z

d4x
p

2gh Vh 2
Z

d4x
p

2gy Vy . (26)

For Eq. (1) to be a solution of the field equations that
follow from Eq. (26), one must arrange Vh � 2Vy �
24M3k, where L � 224M3k2. This amounts to having
a vanishing four-dimensional cosmological constant plus
4924
an additional fine-tuning which causes the rc potential to
vanish. However, imagine perturbing the 3-brane tensions
by small amounts [12]:

Vh ! Vh 1 dVh , (27)

Vy ! Vy 1 dVy . (28)

As long as jdVhj and jdVyj are small compared to 2L�k,
these shifts in the brane tensions induce the following
potential for rc:

VL�rc� � dVh 1 dVye24krcp . (29)

For dVy small, the sum of potentials VF�rc� 1 VL�rc� has
a minimum for large krc. The effective four-dimensional
cosmological constant can be tuned to zero by adjusting the
value of dVh. For dVy , key2

y the minimum is global,
while for dVy . key2

y the minimum is a false vacuum
since rc ! ` is a configuration of lower energy.

We have seen that a bulk scalar with a f-dependent
VEV can generate a potential to stabilize rc without hav-
ing to fine-tune the parameters of the model (there is
still one fine-tuning associated with the four-dimensional
cosmological constant, however). This mechanism for
stabilizing rc is a reasonably generic effect caused by the
presence of a f-dependent vacuum bulk field configura-
tion. It may be worthwhile to work out other features of
the specific toy model presented here, such as the back re-
action of the scalar field and shifts of the brane tensions on
the spacetime geometry. Also, the use of the large l limit
was purely for convenience and the finite l case could be
considered.

With rc stabilized, effective field theory reasoning
suggests that the cosmology associated with this scenario
should be standard for temperatures below the weak
scale. However, for temperatures above this scale, it will
be different (see Ref. [13]) from the usual Friedmann
cosmology.

The scenario presented in Ref. [4] represents an attrac-
tive solution to the hierarchy puzzle. However, it also
has some features that are less appealing than the stan-
dard model with minimal particle content. In this sce-
nario, higher dimension operators are suppressed by the
weak scale and unlike the standard model, where the sup-
pression can be by powers of the grand unified theory
scale, there is no explanation for the smallness of neutrino
masses and the long proton lifetime based simply on di-
mensional analysis.
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