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Quantum Trajectories for Brownian Motion

Walter T. Strunz,1 Lajos Diósi,2 Nicolas Gisin,3 and Ting Yu3
1Fachbereich Physik, Universität GH Essen, 45117 Essen, Germany

2Research Institute for Particle and Nuclear Physics, POB 49, 1525 Budapest 114, Hungary
3Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland

(Received 30 July 1999)

We present the stochastic Schrödinger equation for the dynamics of a quantum particle coupled to
a high temperature environment and apply it to the dynamics of a driven, damped, nonlinear quantum
oscillator. Apart from an initial slip on the environmental memory time scale, in the mean, our
result recovers the solution of the known non-Lindblad quantum Brownian motion master equation.
A remarkable feature of our powerful stochastic approach is its localization property: individual
quantum trajectories remain localized wave packets for all times, even for the classically chaotic system
considered here, the localization being stronger ash̄ ! 0.
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The understanding of the dynamics of open or dissi
tive quantum systems is of fundamental importance b
from a practical and a conceptual point of view. T
archetype of such a system is the standard quantum Bro
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ian motion (QBM) model [1] which describes a partic
with HamiltonianH�q, p�, coupled to an environment o
harmonic oscillators�ql, pl� via its positionq, such that
the total Hamiltonian of system and environment reads
Htot�q, p, ql, pl� � H�q, p� 1
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Up to now, in order to determine the time depende
dynamics of the open “system,” the standard proced
was the derivation of a master equation for the redu
density operator, which, for the high temperature c
considered below, is widely accepted to read

h̄ �rt � 2i�H, rt� 2 i
g

2
�q, �p, rt��

2
mgkT

h̄
���q, �q, rt���� , (2)

whereg is the damping rate. This master equation is
Markov master equationnot, however, of Lindblad form
[2], and indeed it turns out that it may violate the positivi
of rt on very short time scales, which has led to an ongo
debate about its range of applicability [3]. We will briefl
address this issue later on in this Letter.

Our new approach to quantum Brownian motion
very different and circumvents the derivation of a mas
t
re
d
e

a

g

r

equation forrt altogether. Instead, we use a stochas
Schrödinger equation, derived straight from the micr
scopic model (1), for pure statesct�z� (quantum trajec-
tories). Our construction recovers the reduced dens
operator as the ensemble meanM�· · ·� over many of
these quantum trajectories, in principle without a
approximation:

rt � M�jct�z�� �ct�z�j� . (3)

The meanM�· · ·� is taken over the processzt which drives
the stochastic Schrödinger equation. We are thus abl
determinert in a Monte Carlo sense without an explic
master equation for its time evolution.

Quantum trajectory methods have been used extensi
in recent years, mainly in the quantum optics communi
due to their numerical efficiency, their intimate connecti
to (continuous) measurement, and their illustrative pow
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helping to gain physical insight. The master equations
encountered in quantum optics are of standard Lindblad
type, for which Markov quantum trajectory methods are
known for some time now: there are jump processes [4]
and diffusive processes [5] recovering the reduced density
operator. Despite being possibly the best known of all
master equations, the quantum Brownian motion master
equation (2), being not of Lindblad form, has so far been
excluded from a treatment with these powerful methods.

Only recently the authors managed to extend the quan-
tum trajectory concept to non-Markovian situations [6];
more precisely, we were able to determine a stochastic
Schrödinger equation for the dynamics of a quantum sys-
tem coupled to a bath of harmonic oscillators as in (1),
without using the concept of a master equation for rt . An
alternative approach to non-Markovian quantum trajecto-
ries, emphasizing more the continuous measurement point
of view, has now also been established [7].

In its linear version [8], our non-Markovian quantum
state diffusion (QSD) stochastic Schrödinger equation for
the quantum Brownian motion model (1) takes the form

h̄ �ct�z� � 2iH 0ct�z� 1 qztct�z�

2 q
Z t

0
ds a�t, s�

dct�z�
dzs

, (4)

where we assumed a factorized total initial density operator
rtot � jc0� �c0j ≠ rT with a pure system state jc0� and an
environmental thermal density operator rT . The influence
of the environment on the system is encoded in the
bath correlation function a�t, s� � �F�t�F�s��rT where
F�t� �

P
l glql�t� is the quantum force in (1) and zt

is thus a complex Gaussian stochastic c number force
with correlation M�z�

t zs� � a�t, s�. In the usual high
temperature limit kT ¿ h̄L ¿ h̄v, h̄g, where L is an
environmental cutoff frequency and v, g are the typical
system frequency and damping rate, respectively, one
finds [1]

a�t, s� � 2mgkTD�t 2 s� 1 ih̄mg �D�t 2 s� , (5)
where D�t� is a deltalike function decaying on the
environmental “memory” time scale L21 [here we
4910
use D�t� � L

2 e2Ljtj]. In (4), the Hamiltonian H 0 �
H�q, p� 1

1
2mgLq2 contains an additional potential term

that turns out to be counterbalanced by a similar term
arising from the memory integral.

Equation (4) is exact; it provides a quantum trajectory
method for Brownian motion for any temperature and
any distribution of environmental oscillators in the model
(1), i.e., for any a�t, s�. In order to compute numbers,
however, we have to express the functional derivative
under the memory integral in (4) in terms of elementary
operators. In the high temperature limit considered here,
we simply need to expand in terms of the time delay
�t 2 s�,

dct�z�
dzs

�
1
h̄

µ
q 2

p
m

�t 2 s� 1 . . .

∂
ct�z� , (6)

where the dots denote terms of the order �t 2 s�2 and
higher, leading to corrections of the order v	L, g	L

and can therefore be neglected (see [9] for a general
theory of such “post-Markov” open systems). With (6),
the memory integral in (4) takes the formZ t

0
ds a�t, s�

dct�z�
dzs

� �g0�t�q 2 g1�t�p�ct�z� , (7)

where we introduce time dependent coefficients g0�t� �
1
h̄

Rt
0 ds a�t, s� and g1�t� �

1
mh̄

Rt
0 ds�t 2 s�a�t, s�. The

imaginary part of g0�t� will be compensated by the
additional potential term in H 0. The imaginary part of
g1�t� gives rise to damping. The real part of g0�t�
describes diffusion, and as the real part of g1�t� also gives
rise to diffusion, yet smaller by a factor v	L, the latter
can be neglected compared to the former in the regime we
are interested in.

In order to get an efficient Monte Carlo method (impor-
tance sampling [10]), we go over to the nonlinear version
of (4), which keeps the trajectories ct�z� normalized at all
times while retaining the correct ensemble mean (3); see
[6]. Using (7), the relevant stochastic Schrödinger equa-
tion for Brownian motion reads
h̄ �ct�z� � 2iHct�z� 2 i

µ
1
2

mgL 1 Im�g0�t��
∂
q2ct�z� 1 �q 2 �q��ztct�z�

2 Re�g0�t�� ��q 2 �q��2 2 ����q 2 �q��2����ct�z� 1 i Im�g1�t�� �qp 2 �qp� 1 m ��q�q 2 �q�p�ct�z� . (8)
Normalized quantum trajectories ct�z� whose ensemble
mean gives the desired reduced density operator according
to (3) can now be propagated using (8), where ��q� �

d
dt �q�,

a quantity which has to be determined numerically along
with ct�z�. In (8), after a short initial slip t ¿ L21,
the time dependent coefficients approach their asymptotic
values g0�t� ! mgkT

h̄ 2
i
2mgL and Im�g1�t�� ! 2

g

2 .
We now highlight the power of our stochastic

Schrödinger equation for Brownian motion (8) by inves-
tigating the dynamics of a driven, damped, nonlinear,
noisy system, the Duffing oscillator, where H �
1
2p2 1

1
4q4 2

1
2q2 1 gq cos�t�, here coupled to a heat bath at

temperature T . This system has been studied before using
the master equation (2) (see [11] and references therein),
including a straight numerical solution which requires
the propagation of a huge matrix. In our new approach,
one propagates pure states ct�z� according to (8), a great
reduction in resources, with the need, however, to solve
(8) many times in order to evaluate the mean values.
For Lindblad master equations, the power of quantum
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trajectory methods for investigating classically chaotic
dissipative systems was shown in [12] (see also [13]).

We use parameters g � 0.3 with a damping rate g �
0.25; thus the classical problem is chaotic [14]. The
environment is furthermore characterized by kT � 0.3,
and a cutoff frequency L � 5. With h̄ of the order
1022 and smaller (see various choices of h̄ below), the
parameters are in the required regime. As the initial
condition we chose a standard coherent state located at
�q� � 0.1, �p� � 0.1.

In Fig. 1 we show the ensemble mean M�Wz�q, p, t �
4�� over 1000, 5000, and 10 000 Wigner functions of pure
state trajectories ct�z� obtained solving (8) numerically up
to a time t � 4. According to our construction, this quan-
tity converges to the Wigner function of the reduced den-
sity operator for many realizations. Here we have chosen
h̄ � 0.01, a phase space area corresponding approximately
to the extension of the wave packets shown in Fig. 2.

In Fig. 2 we show contour plots of Wigner functions
Wz�q, p, t � 4� of four realizations of (8), many of which
add up to the Wigner function of the desired reduced
density matrix shown in Fig. 1. One can see clearly that
these individual Wigner functions are well localized in
phase space compared to the phase space spread of the
ensemble, even for this classically chaotic system.

This remarkable feature of the QBM stochastic
Schrödinger equation (8) is highlighted again in Fig. 3,
where we show the mean position spread, M�Dq� �
M�

p
����q 2 �q��2���� and the mean uncertainty product

M�DqDp	h̄� in units of h̄ of individual trajectories as a
function of time for three different choices of h̄.

The quantities shown in Fig. 3 can only be given sense
in the framework of quantum trajectories; they have no
meaning from a density operator point of view as they
are the ensemble mean over an expression nonquadratic
in ct�z�. It is apparent from Fig. 3 that individual trajec-
tories are well localized in phase space for all times, the
localization being stronger the smaller h̄. As can be seen,
our quantum trajectories remain almost “classical” states,
yet recover the fully quantum master equation (2). Thus,
the representation (3) expresses the reduced density opera-
tor of quantum Brownian motion explicitly as a mixture of
almost classical states.

The observed localization property of QSD is well
known in the Markov case and has been studied, for
instance, in [13]. Here we see that similar properties
hold for the generalized non-Markovian QSD equation (8)
which has now been applied to quantum dynamics beyond
the class of Lindblad master equations.

Finally, let us briefly address the connection between
our approach and the widely used QBM master equa-
tion (2). Since a quantum trajectory approach strictly
preserves positivity of the reduced density operator, our
QBM stochastic Schrödinger equation (8) cannot be iden-
tical to (2) in the mean, as the latter is known to violate
positivity on short time scales. Taking the ensemble mean
M�· · ·� in (3) with (4) analytically, we were able to show
FIG. 1. Contour plots of the Wigner function W�q, p, t � 4�
of the reduced density operator of the thermal Duffing oscillator
with h̄ � 0.01 (for the phase space area corresponding to this
h̄, see Fig. 2). The contour plots show the ensemble mean over
1000, 5000, and 10 000 Wigner functions Wz�q, p, t � 4� of
individual quantum trajectories obtained solving the quantum
Brownian motion stochastic Schrödinger equation (8).

in [9] that in the regime considered in this Letter the evo-
lution of the ensemble mean (3) is well described by the
master equation
4911
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FIG. 2. Contour plots of Wigner functions Wz�q, p, t � 4�
of four individual quantum trajectories obtained solving the
quantum Brownian motion stochastic Schrödinger equation
(8) for the thermal Duffing oscillator. Individual trajectories
remain well localized in phase space with respect to the overall
spread of the ensemble mean, even for this classically chaotic
system. The chosen value of h̄ � 0.01 is slightly smaller than
the phase space area covered by these states.

h̄ �r � 2i�H, r� 2 i

µ
1
2

mgL 1 Im�g0�t��
∂

�q2, r�

1 i Im�g1�t�� �q, �p, r�� 2 Re�g0�t�� ���q, �q, r���� ,

(9)

which reduces to (2) for times larger than the environ-
mental memory time, t ¿ L21, due to the asymptotics
of the coefficients g0�t�, g1�t�. Thus, apart from an ini-
tial slip on the environmental memory time scale L21,
our approach recovers (2) in the mean. It is known in the
case of the exact master equation for a damped harmonic
oscillator [15] that such time dependent coefficients may
ensure the positivity of the reduced density operator for
non-Lindblad master equations, a result that is here sup-
ported for general system Hamiltonian H�q, p�.

To conclude, we have presented the stochastic
Schrödinger equation for Brownian motion. It is compat-
ible with the standard QBM master equation yet allows one
to compute states rather than a matrix, a huge reduction in
resources, which becomes even more relevant for QBM
in more than one space dimension. Individual trajectories
are well localized in phase space, the localization being
stronger the smaller h̄. Thus, in (3), the reduced density
operator for Brownian motion is explicitly represented as
an ensemble of almost classical states.

We thank F. Haake and I. C. Percival for helpful com-
ments. W. T. S. thanks the Deutsche Forschungsgemein-
schaft for support through the SFB 237 “Unordnung und
4912
FIG. 3. Localization property of the QBM stochastic
Schrödinger equation. Individual runs are well localized in
phase space, the localization being stronger the smaller h̄:
(a) the average position spread M�Dq� � M�

p
����q 2 �q��2��� �

of solutions of the QBM stochastic Schrödinger equation for
the choices h̄ � 0.01 (solid line), h̄ � 0.005 (dashed line),
and h̄ � 0.001 (dotted line). (b) Shows the mean uncertainty
product M�DqDp�	h̄, which remains of the order 1 almost
independently of h̄. Thus the quantum trajectories remain
almost minimum uncertainty wave packets for all times.

große Fluktuationen.” N. G. and T. Y. thank the Swiss
National Science Foundation.
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