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We study the response of one- and two-dimensional excitable media to external spatiotemporal noise
in terms of synchronization. The media are modeled by a finite-size lattice of locally coupled non-
identical units of the FitzHugh-Nagumo type driven by additive noise. We show that at nonzero noise
level the behavior of the system becomes extremely ordered which is manifested by entrainment of the
mean frequencies and by stochastic phase locking of distant oscillators in the lattice.

PACS numbers: 82.40.Bj, 05.45.Xt, 05.50.+q, 84.35.+ i
Originally, synchronization has been studied for peri-
odically driven self-sustained oscillators [1] and later
noise sources were included into the consideration [2].
Today synchronization of noisy oscillators again achieves
high importance in biomedical applications [3–5] and in
neuroscience [6,7] as a possible mechanism of encoding
of external signals [8]. Recent studies have shown
that the class of systems and driving signals which
exhibit synchronization could be significantly extended.
Different types of synchronization have been found in
chaotic systems [9–12]. Synchronization effects have
been observed in stochastic systems, where noise controls
the characteristic frequency of the system [13–16] and
may enhance synchronization [17,18].

This positive, e.g., ordering, role of noise has been
observed also in extended excitable systems, including
spatiotemporal stochastic resonance [19], noise-induced
spiral waves [20], noise-enhanced wave propagation
[21,22], as well as noise-induced spiral chaos [23] and
memory [24]. These effects have been observed in ex-
periments with biological [25] and chemical [26] systems.
In [27,28] the noise-induced synchronization of globally
coupled identical neuron oscillators has been studied.
Recently in Ref. [29] a new effect of noise-induced
transition from pulsating spots to global oscillations in
excitable media modeled by cellular automata has been
reported. On the other hand, the authors of [30] studied
synchronization of oscillators with randomly distributed
natural frequencies.

Here we study phase synchronization in noisy excitable
media which is modeled by a discrete network of dif-
fusively coupled nonidentical FitzHugh-Nagumo oscilla-
tors. This model is generic for a number of applications
in chemical physics and in neuroscience. In particular, it
has been shown recently that the FitzHugh-Nagumo sys-
tem models the firing activity of electroreceptor cells of
the electric fish [31]. Thus, in contrast to previous studies
our model combines local coupling, spatiotemporal noise,
and nonidentity of the units. We will show that the space-
time behavior of the system becomes extremely ordered at
a nonzero noise level. With tu and tw being the charac-
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teristic time scales of the activator and inhibitor and intro-
ducing the dimensionless time by scaling the time as twt
it reads
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where e � tu�tw ø 1 and, hence, u�t, n� and w�t, n�
are a fast and a slow variable, respectively. For the
one-dimensional case, d � 1, these variables are defined
on a chain n � 1, . . . , N while, in the two-dimensional
case, d � 2, u and w are defined on a square lattice
with the spacing l. The sum (over neighbors) stands for
the discrete Laplace operator in one and two dimensions,
respectively, modeling the local interactions with coupling
strength g � Dutu and Du is the diffusion coefficient of
the activator. Further on we assume stochastic forcing
by Gaussian white noise j, statistically independent
in space and with zero mean �j�t, n�j�t 1 t, m�� �
dm,nd�t� [32].

Let us briefly review the local dynamics of the un-
coupled element which depends significantly on parame-
ters a�n� responsible for excitory properties of the local
dynamics. In the absence of noise for a , 1 the system
possesses a stable periodic solution (limit cycle) generat-
ing a periodic sequence of spikes. The parameter value
a � 1 corresponds to the birth of a limit cycle, and for
a . 1 the single uncoupled element is excitable. The
presence of stochastic perturbations leads to the existence
of a peak in the spectral density even in the excitable
regime. The peculiarity of excitable systems is that the
coherence of noise-induced activity can be optimized by
tuning the noise strength [33].

For a network of coupled FitzHugh-Nagumo oscillators
it is natural to expect that for strong enough coupling the
firing events of particular elements will be synchronized.
In our numerical simulations we fixed e � 0.01, tw � 1,
© 1999 The American Physical Society
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l � 1, and g � 0.05, while the activation parameters
a�n� are random numbers distributed uniformly on [1.03,
1.1]. This leads to a distribution of spiking times if noise
is applied. We also use free boundary and random initial
conditions. In the absence of noise any initial state of the
system evolves to an equilibrium state.

Depending on noise strength D, for a sufficiently large
value of the coupling strength three basic types of space-
time behavior can be observed. For a small noise centers
of excitation are nucleated very seldomly in random po-
sitions in the media giving rise to propagating waves. In
this case different cells in the media are correlated only
on a short time scale of a mean time of wave propaga-
tion and there is no synchronization between distant cells.
For a large noise strength, the nucleation rate is very high
and the media is represented by stochastically firing cells.
However, for an optimal noise intensity the media becomes
phase coherent: firings of different and distant cells occur
almost in phase. Those three cases are shown in Fig. 1.

To characterize this effect for the one-dimensional
case quantitatively we introduce the instantaneous phase
F�t, n� of the nth element using the analytic signal rep-
resentation [34]. We define the analytic signal z�t, n� �
u�t, n� 1 iy�t, n�, where y�t, n� is the Hilbert transform
of the original variable u�n, t� in the time domain:

y�t, n� �
1
p

R`
2`

u�t,n�
t2t dt and F�t, n� � arctan� y�t,n�

u�t,n� �.
We choose the central cell in the media �n � N�2�
as a reference element and then calculate the phase
differences f�t, k� � F�t, N�2� 2 F�t, N�2 1 k�, k �
2N�2, . . . , N�2. The results of calculations of the phase
differences are shown in the inset of Fig. 2 for three
values of noise intensity. For the optimal noise level
the phases of different oscillators are locked during the
time of computations. In the case of large distances
between oscillators the phase fluctuations do indeed grow.
Nevertheless, the phase difference is still bounded during
long periods of time in a certain range. For nonoptimal
noise intensities a partial phase synchronization with
randomly occurring phase slips can be observed only
between neighboring elements. For larger distances the
diffusion of the phase differences becomes very strong
and synchronization breaks down.

A measure of stochastic synchronization is the cross-
diffusion coefficient [2] Deff�k� �

1
2

d
dt ��f2�t,k�� 2

�f�t,k��2�. This quantity describes the spreading in time
of an initial distribution of the phase difference between
the N�2th and all other elements. If this diffusion con-
stant decreases a longer phase locking epochs appears
and, therefore, phase synchronization becomes stronger.
A single measure is obtained by averaging Deff�k� over

the spatial distance Deff �
1
N

PN�2
k�2N�2 Deff�k�. The

dependence of this averaged effective cross-diffusion
constant versus noise intensity is in Fig. 2 and demon-
strates a global minimum at nonzero noise level.

Synchronization is also defined as a frequency locking
effect. In the case of a stochastic system one must use
FIG. 1. Spatiotemporal evolution of the system described
by Eq. (1) for different values of noise intensity (from left
to right) D � 1.125 3 1024; D � 3.125 3 1024; D � 5 3
1023. Other parameters: e � 0.01, g � 0.05, and l � 1. The
upper figure corresponds to the one-dimensional case with
N � 500 elements; the vertical axes correspond to time and
the horizontal line is space variable. Black dots indicate firing
elements. The lower figure represents three frame sequences
for the two-dimensional case of 200 3 200 lattice, where white
dots correspond to firings.

the mean frequencies �v�n�� � � �F�t, n�� of the oscillators
[2]. Because of the given distribution of the a�n�,
the elements in the network have different randomly
scattered frequencies for vanishing coupling. We have
numerically built the distribution of the mean frequencies,
calculated for every element across the network, P��v��,
for different noise intensities. The results are shown in
Fig. 3. A remarkable effect of noise-enhanced space-
time synchronization can be seen from this figure. For
the optimal noise intensity, when the phases of different
oscillators are locked for long periods of time, the
mean frequencies are entrained and the distribution of
4897



VOLUME 83, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 6 DECEMBER 1999
0.01 0.05 0.09
(2D)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

D

0 1 2 3
−300

−200

−100

0

100

t • 10 4

1/2

ef
f

φ
(t

,2
00

) 2

3

1

FIG. 2. The averaged effective cross-diffusion constant versus
noise intensity. The dashed line corresponds to the uncoupled
lattice �g � 0�. Inset: Phase differences between indicated
oscillators for different values of noise variance: D � 1.125 3
1024 �1�; D � 3.125 3 1024 �2�; D � 5 3 1023 �3�. Other
parameters are the same as in the previous figure.

the mean frequencies becomes extremely narrow. For
nonoptimal noises the mean frequencies show rather
wide distributions indicating the lack of synchronization.
The last figure clearly indicates noise-induced space-
time ordering in the system based on a synchronization
mechanism. We quantify this effect further by calculating
the mean square deviation s�v� of the mean frequencies
averaging over the network s

2
�v� � 1

N

PN
n�1�v�n�2� 2

� 1
N

PN
n�1�v�n���2. The dependence of this quantity on

noise intensity is shown in the inset of Fig. 3. It is seen
that s

2
�v� can be minimized up to very small values (of

the order of 1027) by tuning the noise. Synchronization
is indeed absent for vanishing coupling. The mean firing
rate of the cells saturates for large D, leading to the
saturation of s�v� and also the effective cross-diffusion
coefficient (shown by the dashed lines in Figs. 3 and 2,
respectively).

With the increase of the system size phase synchroniza-
tion becomes worse as the phase fluctuation grows with
the growth of the system size. This is in agreement with
the theoretical predictions of Ref. [35]. Two-dimensional
excitable media (see lower part of Fig. 1) demonstrate
qualitatively the same behavior (in the sense of the av-
eraged characteristic described above). For a weak noise
the system possesses noise-induced target waves which
are initiated in random positions in the media. Collapsing
of such waves cannot exhibit stable spiral waves since the
velocity of the waves at the intersection is always directed
outside of the intersecting region. Therefore no new open
spirals may occur. However, in the case of parametric
noise the propagating fronts may locally backfire small
directed spots which break propagating excitations and
make spirals possible [23]. At the optimal noise level the
4898
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FIG. 3. Distribution of the mean frequencies of oscillators
for different values of noise intensity: D � 1.125 3 1024 �1�;
D � 3.125 3 1024 �2�; D � 5 3 1023 �3�. Inset: the vari-
ance of the mean frequencies s

2
�v� versus noise intensity. Other

parameters are the same as in Fig. 1. The dashed line corre-
sponds to uncoupled lattice �g � 0�.

whole media oscillates nearly periodically (see the middle
row in the lower part of Fig. 1). Finally, the case of large
noise is represented by randomly flushing clusters.

The mechanism of the noise-induced synchronization
is rooted in the behavior of a single uncoupled element.
The noise-induced oscillations are most coherent at a
nonzero noise intensity and the quality factor of the noise-
induced peak in the power spectrum is maximal. In this
regime the mean firing rate (or the mean frequency) of
the system approaches the peak frequency in the power
spectrum. In the case of weak noise the mean firing
rate depends exponentially on the control parameter a
�a . 1� [36]. However, with the increase of D the mean
frequency approaches the value of the peak frequency
in the power spectrum and then saturates. That is why
with the increase of noise from a very low level the
mismatch between characteristic frequencies of elements
in the coupled array decreases providing better conditions
for mutual synchronization. On the other hand, the noise-
induced oscillation becomes more coherent. These effects
will tend to facilitate synchronization among elements in
the network. Large noise, alternatively, destroys again the
coherence of local stochastic oscillations (the frequency
and phase fluctuations grow rapidly) and also leads
to the destruction of spatial coherent structures. The
optimal noise intensity at which synchronization is most
pronounced depends on the range of the distribution of
activation parameters a�n�: with the increase of the range
of disorder the optimal noise intensity shifts towards
smaller values.

In conclusion, we have demonstrated the space-time
stochastic synchronization in discrete excitable media
modeled by diffusively coupled FitzHugh-Nagumo
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oscillators driven by external noise. This phenomenon
manifests itself as stochastic phase locking between
distant cells and also as the mean frequency entrainment.
We have also revealed that the degree of phase coher-
ence, quantified by the effective diffusion constant and
by the variance of the mean frequencies of oscillators,
can be enhanced by tuning the noise intensity. Noise
contaminated oscillations and synchronization are rather
typical in biological systems, starting from molecular [37]
and cell networks [5] up to the dynamics of biological
populations [38]. Our results indicate that noise might
play an important role in the self-organization of coupled
excitable elements through the synchronization mecha-
nism. Therefore, our findings could be of importance for
biological /medical applications.
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