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Effects of Pinning on the Flux Flow Hall Resistivity

N. B. Kopnin1,2 and V. M. Vinokur2

1L. D. Landau Institute for Theoretical Physics, 117334 Moscow, Russia
2Argonne National Laboratory, Argonne, Illinois 60439

(Received 27 July 1999)

We demonstrate that pinning strongly renormalizes both longitudinal and Hall resistivity in the flux
flow regime. Using a simple model for the pinning potential we show that the magnitude of the vortex
contribution to the Hall voltage decreases with increase in the pinning strength. The Hall resistivity
rxy scales as r2

xx only for a weak pinning. On the contrary, a strong pinning breaks the scaling relation
and can even result in a sign reversal of rxy .
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Experiments show that the Hall resistivity in high-Tc

superconductors depends at least on two factors: the dop-
ing level and the intensity of vortex pinning in the su-
perconducting sample. By varying the doping level, it
is possible to change not only the magnitude of the Hall
voltage but also its sign: The sign reversal of the Hall
angle is usually observed for underdoped compounds
while it is not seen for overdoped superconductors [1].
On the other hand, the Hall voltage is also a function
of the pinning strength. By tuning the concentration of
columnar defects, the Hall anomaly was shown to be-
come less pronounced with the increase in the density
of the defects [2–4]. The microscopic theory of vortex
dynamics in clean type II superconductors explains the
Hall angle sign reversal as the effect of a complicated
electronic spectrum in the superconductor [5,6]. The ef-
fect of pinning on the Hall anomaly is not well under-
stood. There are several contradicting views. According
to Ref. [7], pinning affects the counterflow in the vortex
core which may result in a more pronounced sign anomaly
as the pinning strength increases. This prediction, how-
ever, disagrees with the experiments [2,4] where the op-
posite trend has been observed. On the contrary, Ref. [8]
demonstrates that pinning does not affect the Hall conduc-
tivity and thus the Hall resistivity scales as rxy ~ r

b
xx with

b � 2 for small Hall angles. Such scaling was observed
in several experiments [3,4,9]. However, the scaling ex-
ponent was not always universal and varied from b � 2
to b � 1 depending on the applied magnetic field and
concentration of defects.

The scaling [8] rests on a perturbation expansion of the
vortex response in the pinning strength. However, recent
experiments raise questions as to whether the arguments
supporting the scaling are general enough and call us
to revisit this problem. In the present Letter, we use
a simple model for the pinning potential to demonstrate
that the pinning intensity can affect drastically the current
dependences of both the longitudinal and the transverse
voltages in the flux flow regime. The relevant phenomena
take place on a macroscopic scale larger than the vortex
core size: While the microscopic parameters for each
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vortex do not change, the trajectory of the vortex motion
changes giving rise to a pronounced variation in the
overall response of the superconducting sample. We
show that the magnitude of the vortex contribution to the
Hall resistivity decreases with an increase in the pinning
strength which agrees with the general observations of
Refs. [2,4]. Nevertheless, pinning can affect the Hall-
angle sign anomaly: the vortex contribution may reverse
sign for a large pinning strength. For weak pinning,
however, the Hall conductivity remains almost intact as
was shown in Ref. [8] and the scaling rxy ~ r2

xx for small
Hall angles is restored.

Symmetry of the pinning force.—We start with the
equation of the vortex dynamics in the form

F0

c
�j 3 z� 1 Fpin�rL� 1 Fel�rL� � hvL 1 h0�vL 3 z� .

(1)

Here j is the transport current, F0 � p h̄c�jej is the
magnetic flux quantum, and z is the unit vector in the
direction of the magnetic field. The first term in Eq. (1) is
the Lorentz force, and the next two terms are the pinning
and elastic forces which depend on the vortex position
with respect to both the pinning centers and other vortices
in the vortex lattice; the terms on the right-hand side
are the friction and the transverse forces on the moving
vortex, respectively.

To find the I-V curve one needs to solve the differential
equation (1) for the averaged in time vortex velocity v̄L in
a given realization of the pinning potential. If the pinning
potential is random, one can solve this equation within a
finite region inside the superconductor and then average
the obtained vortex velocity v̄L over the disorder. We
denote the time- and disorder-averaged velocity �v̄L� 	 v .
After the final averaging, the pinning force will depend on
the vortex velocity v only,

�F̄pin� � F1�y�v 1 F2�y� �v 3 z� . (2)

We argue that both coefficients F1 and F2 are generally
nonzero. Indeed, Eq. (1) does not possess a definite
symmetry under the time-reversal transformation t ! 2t
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and H ! 2H because of a finite dissipation h fi 0.
Therefore, the vortex trajectory in the simultaneously
inverted magnetic field and transport current is different
from its trajectory for the initial orientations of j and
H. Since the pinning force is determined by the vortex
trajectory, it will contain an explicit dependence both on
the direction of the magnetic field and on the direction of
vL after averaging.

There are two limiting cases which can be considered
for illustration. Let us take first the limit of zero
Hall angle, h0 � 0. If we simultaneously invert both
j ! 2j and the direction of magnetic field H ! 2H,
the equation of vortex motion remains unchanged and
vL ! vL. The trajectory of a vortex and its direction of
motion remain the same; thus the average pinning force
does not change: F̄pin ! F̄pin. This is possible only if
F2 � 0. Another example is the absence of dissipation,
h � 0. In this case, the time-reversal symmetry is
restored; thus the vortex trajectory remains the same
under the transformation j ! 2j, vL ! 2vL together
with H ! 2H. Now the vortex velocity changes its
sign: the vortex travels along the trajectory in the opposite
direction. However, the pinning force averaged over time
is independent of the direction of the vortex motion
along its trajectory. Indeed, it is determined only by
vortex positions being even in t ! 2t for a given
vortex position r. Therefore, F̄pin ! F̄pin under such
transformation. According to Eq. (2), it is possible only if
F1 � 0: No dissipation can arise from a potential force.

We thus arrive at the conclusion that pinning may affect
both longitudinal and transverse flux flow conductivity
through the modified force parameters

h ! h 2 F1; h0 ! h0 2 F2 .

It was shown in Ref. [8] that, for a weak pinning, the
factor F2 is small: it vanishes faster than F1 as the pinning
strength decreases. We shall also see this using our model
for the pinning potential.

The model.—To quantify our discussion, let us replace
the true pinning relief which is seen by vortices moving
along their trajectories with some model potential. To
this end, we consider the sample as being subdivided into
different regions (grains) such that, within each grain,
pinning is due to the washboard potential. Pinning planes
in different grains are randomly oriented with respect to
each other. The washboard potential is characterized by
the “depinning current” jp such that the pinning force is

Fpin � 2
F0

c
� jp 3 z� . (3)

In the coordinate frame associated with the “pinning
planes” and having the local x axis along the planes,

jp � ���2jc sin�2py�d�, 0, 0��� . (4)

The pinning strength jc is assumed constant; the interpla-
nar distance d will not appear in the final results. The lo-
cal coordinate frame �x, y� is randomly oriented over the
superconductor (see Fig. 1). This model describes well
x
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FIG. 1. Grains with washboard pinning potential and local
reference frames randomly oriented through the sample.

vortex pinning by twin boundaries. However, the qualita-
tive picture should also hold for pinning by columnar and
even by point defects.

We find the vortex velocity and the induced electric
field within each grain and then average the electric field
over random orientations of pinning planes for a given
current density. The approximation of a constant current
density implies that the moving vortex array maintains
its arrangement on average as each individual vortex per-
forms a nearly random motion from one grain to another.
This requires that the grain size is much smaller than the
intervortex distance. We consider vortices individually
neglecting their interaction with each other. This can be
done if the pinning potential is stronger than the elastic
energy of the vortex array.

From Eqs. (1), (3), and (4), we have for the vortex
velocity in the local frame

yLx �
F0

hc
jy 2

h0

h
yLy , (5)

yLy � 2
c
B

Rkjc

∑
a 1 sin

µ
2py

d

∂∏
, (6)

where we denote a � � jx 2 �h0�h�jy��jc and introduce
the resistivity in the absence of pinning,

Rk �
BF0

c2

h

h2 1 h0 2 ; R� �
BF0

c2

h0

h2 1 h0 2 .

(7)

For large currents such that a2 . 1, the solution of
Eq. (6) determines the time t0 needed to cover the
distance d along the y axis:Z d

0

dy
a 2 sin�2py�d�

�
cRkt0

B
.
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The average velocity ȳLy � d�t0, thus

ȳLy � 2
c
B

Rkjcsgn�a�
p

a2 2 1 ,

ȳLx �
F0

ch
jy 1

c
B

R�jcsgn�a�
p

a2 2 1 .

The induced electric field is

Ex � 2�B�c�ȳLy ; Ey � �B�c�ȳLx .

For low currents, a2 , 1, we find from Eqs. (5) and
(6) yLy � 0 and ȳLx � jy�F0�ch�: Vortices perform a
guided motion along the pinning planes.

The longitudinal and transverse components of the
electric field can be found from

j ? E
j2 � RkQ�a2 2 1�

∑
1 2

jc

j
F�a� cos�f 2 a�

cosa

∏

1 R̄kQ�1 2 a2� sin2f (8)

and

�j 3 E� ? z
j2 � R�Q�a2 2 1�

h
1 1

jc

j
F�a� sin�f 2 a�

sina

∏

1 R̄kQ�1 2 a2� sinf cosf , (9)

where

F�a� � a 2 sgn�a�
p

a2 2 1

and R̄k � F0B�hc2. We put jx � j cosf, jy � j sinf,
and introduce the “ideal Hall angle” through tana �
R��Rk � h0�h. Next we put f � p�2 2 a 2 b and
denote

sinb0 � � jc�j� cosa; 0 # b0 # p�2

so that a � sinb� sinb0.
The next step is to average Eqs. (8) and (9) over the

directions of the pinning planes. This is equivalent to
averaging over the directions of the current with respect
to the local frame.

Before getting to calculations of the averages let us
set the idea of our final results by considering first the
simplest case j , jc cosa so that b0 � p�2. Now a ,

1 for all orientations of the pinning planes, and vortices
can glide only along the planes. Therefore the average
dissipation is finite while the average Hall voltage is equal
to zero for random orientations of the planes. The latter
follows from Eq. (9) where the second term on the right-
hand side vanishes after averaging over f.

Note that the factor cosa in the inequality j , jc cosa
shows that the region of guided motion decreases as the
ideal Hall angle a approaches p�2. Indeed, for the limit
a � p�2, Eq. (6) yields yLy � F0jy�ch0; the velocity
along the x axis is determined by Eq. (5),

yLx �
F0

ch0

∑
jx 1 jc sin

µ
2py

d

∂∏
.

Therefore, the motion along the y axis, i.e., the motion
across the planes, is not restricted and the guided motion
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does not take place for any current if a � p�2; the
pinning force and the Lorentz force in the y direction
are balanced by the reactive force generated by the x
component of the vortex velocity.

Vortex traps: the I-V curve.—There is no complete
pinning in the washboard potential within a grain: the
vortex can always glide along the pinning planes. How-
ever, interfaces between adjacent grains can provide traps
for vortices. We can model the traps in the following
way. Consider a vortex after it enters a new grain. If
a2 . 1 in this grain, the vortex can move in any direc-
tion and thus is not trapped at the boundary. On the con-
trary, vortex would perform a guided motion along the
pinning planes if a2 , 1. In this case, the trap appears if
gliding in this grain is directed towards its interface with
the preceding grain. Therefore, only the vortex moving
away from the interface contributes to the flux flow volt-
age. It means that, when calculating the average voltage,
we should take the contribution to the integral from the
regions of a guided motion a2 , 1 with the weight 1

2 .
Vortices can also be much easier trapped by other defects
when their motion is restricted to one dimension by the
pinning planes. In general, we can introduce a “trans-
parency” g such that a vortex which performs a guided
motion within a grain is immobilized with the probabil-
ity 1 2 g. For the example considered above, g � 1�2.
According to this definition, the region with a2 , 1 con-
tributes with the weight factor g.

For j . jc cosa, the averaging over b gives for the
longitudinal voltage

Ek�jRk � g�1 1 cos2b0 1 sin2b0 tan2a��2

1 �1 2 g� � y1�b0� 1 y2�b0� tan2a��2

where

y1�b0� � 1 2
2b0

p
1 cos2b0 2

1
p

sin�2b0� ,

y2�b0� � 1 2
2b0

p
2 cos2b0 1

1
p

sin�2b0� .

One can check that both terms are positive, of course. The
Hall voltage becomes

E��jR� �

∑
cos2b0 2

�1 2 g�
p

sin�2b0�
∏

.

The Hall angle is tanuH � r��rk.
If j , jc cosa, we have b0 � p�2 and �j ? E� �

j2gR̄k�2 while �� j 3 E� ? z� � 0. The Hall angle
vanishes.

The I-V curve becomes nonlinear in the presence of
pinning both for the longitudinal and for the transverse
voltages. Moreover, we see that pinning not only affects
the longitudinal flux flow resistivity: it changes drastically
the Hall resistivity, as well. With an increase in the depin-
ning strength for a fixed measuring current, the magnitude
of the vortex contribution to the Hall voltage decreases.
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It changes sign for tanb0 � p��2�1 2 g�� and then van-
ishes at all for a high enough pinning intensity b0 � p�2
when the vortex motion is completely guided by the pin-
ning profile and thus averages out for randomly oriented
trajectories. In our model, the longitudinal resistivity re-
mains finite at this point unless g � 0: vortices always
have a possibility to glide. The disappearance of the Hall
voltage prior to full immobilizing of vortices for g fi 0
is, probably, model dependent. Complete trapping cor-
responds to g � 0. In this case, all vortices which can
move only along the pinning planes get trapped at the in-
terfaces between different grains or by other defects. The
longitudinal and Hall voltages vanish simultaneously.

The limit of weak pinning corresponds to g � 1 and
b0 ø 1. We have for a small Hall angle

rxx � Rk

µ
1 2

1
2

sin2b0

∂
, rxy � R�

°
1 2 sin2b0

¢
.

This results in a scaling relation rxy ~ r2
xx as a function

of the pinning strength which holds within the first order
terms in j2

c�j2 in agreement with Ref. [8]. However,
the scaling behavior is usually seen in experiments when
the resistivity is several hundred times smaller than the
normal-state value, i.e., close to the flux creep regime
when pinning cannot be regarded as weak. The present
model does not consider the flux creep and more studies
are needed to investigate the Hall resistivity in this
regime.

The microscopic theory of the vortex dynamics in
clean superconductors [5,6] predicts that, in the absence
of pinning, the vortex contribution to the Hall current
described by the coefficient h0 in Eq. (1) may have
the sign different from the sign of the Hall effect in
the normal state. This is possible if the Fermi surface
of the metal in the normal state has both holelike
and electronlike pockets. The Hall anomaly may thus
depend on the doping level. Moreover, since different
characteristics of the Fermi surface are responsible for the
vortex contribution at different temperatures (for a given
magnetic field) the sign of the vortex Hall effect may
alternate up to 2 times.

The pinning can remove or introduce the Hall anomaly:
if there was an anomaly without pinning, it could disap-
pear for high pinning intensity, and vice versa. Indeed,
assume that, without pinning, the vortex and the normal-
state Hall effects have different signs. The Hall anomaly
appears as temperature or magnetic field are decreased
below Tc or Hc2, respectively, because the vortex con-
tribution overtakes the normal state Hall value. For in-
creasing pinning, the vortex contribution gets smaller and
can reach values which are insufficient to counteract that
of the normal state. The vortex contribution may even
change its sign which also affects the Hall anomaly. Pro-
nounced effects of pinning on the Hall anomaly have been
observed experimentally [4].

The fact that pinning affects both longitudinal and
transverse forces acting on a moving vortex may have
an implication for interpreting measurements of the trans-
verse force experienced by moving vortices [10]. Indeed,
the pinning contribution to the transverse force does not
drop out if the direction of the magnetic field is reversed;
thus a substantial pinning component may be present in
the total force measured in Ref. [10].

In conclusion, we demonstrate that pinning strongly
renormalizes both longitudinal and Hall flux flow resistiv-
ity. Using a simple model for pinning we show that the
magnitude of the vortex contribution to the Hall voltage
decreases with increase in the pinning strength or with
a decrease in transport current. The Hall resistivity rxy

does not scale generally as r2
xx . A strong enough pinning

can even result in a sign reversal of rxy .
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