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In quantum chromodynamics (QCD) at nonzero chemical potential, the eigenvalues of the Dirac
operator are scattered in the complex plane. Can the fluctuation properties of the Dirac spectrum be
described by universal predictions of non-Hermitian random matrix theory? We introduce an unfolding
procedure for complex eigenvalues and apply it to data from lattice QCD at finite chemical potential
m to construct the nearest-neighbor spacing distribution of adjacent eigenvalues in the complex plane.
For intermediate values of m, we find agreement with predictions of the Ginibre ensemble of random
matrix theory, both in the confinement and in the deconfinement phase.

PACS numbers: 12.38.Gc, 05.45.Pq
Physical systems which are described by non-Hermitian
operators have recently attracted a lot of attention. They
are of interest, e.g., in dissipative quantum chaos [1], dis-
ordered systems [2,3], neural networks [4], and quantum
chromodynamics (QCD) at finite chemical potential [5].
Often they display unusual and unexpected behavior, such
as a delocalization transition in one dimension [2]. Con-
sequently, analytical efforts have been made to develop
mathematical methods to deal with non-Hermitian matri-
ces (see, e.g., Refs. [6–10]).

Of particular interest in the analysis of complicated
quantum systems are the properties of the eigenvalues of
the Hamilton operator. In the Hermitian case, it has been
shown for many different systems that the spectral fluctu-
ations on the scale of the mean level spacing are given by
universal predictions of random matrix theory (RMT) [11].
In QCD, one studies the eigenvalues of the Dirac operator,
and it was demonstrated in lattice simulations that at zero
chemical potential, the local spectral fluctuation properties
in the bulk of the spectrum are reproduced by Hermitian
RMT both in the confinement and in the deconfinement
phase [12].

If one considers QCD at nonzero chemical potential,
the Dirac operator loses its Hermiticity properties so that
its eigenvalues become complex. The aim of the present
paper is to investigate whether non-Hermitian RMT is
able to describe the fluctuation properties of the complex
eigenvalues of the QCD Dirac operator. The eigenvalues
are generated on the lattice for various values of m. We
define a two-dimensional unfolding procedure to separate
the average eigenvalue density from the fluctuations and
construct the nearest-neighbor spacing distribution P�s� of
adjacent eigenvalues in the complex plane. The data are
then compared to analytical predictions of non-Hermitian
RMT.

We start with a few definitions. At m fi 0, the QCD
Dirac operator on the lattice in the staggered formulation
0031-9007�99�83(3)�484(4)$15.00
is given by [13]
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with the link variables U and the staggered phases h. The
lattice constant is denoted by a, and color indices have
been suppressed.

We consider gauge group SU(3) which corresponds to
the symmetry class of the chiral unitary ensemble of RMT
[14]. At zero chemical potential, all Dirac eigenvalues
are purely imaginary, and the nearest-neighbor spacing
distribution P�s� of the lattice data agrees with the Wigner
surmise of Hermitian RMT,

PW �s� �
32
p2 s2e24s2�p , (2)

both in the confinement and in the deconfinement phase
[12]. This finding implies strong correlations of the
eigenvalues. In contrast, for uncorrelated eigenvalues
P�s� is given by the Poisson distribution PP �s� � e2s.

For m . 0, the eigenvalues of the matrix in Eq. (1)
move into the complex plane. If the real and imaginary
parts of the strongly correlated eigenvalues have approxi-
mately the same average magnitude, the system should
be described by the Ginibre ensemble of non-Hermitian
RMT [6]. As is the case in Hermitian RMT, we assume
that the chiral structure of the problem does not affect the
spectral fluctuation properties in the spectrum bulk.

For a complex spectrum, we define P�s� to represent
the spacing distribution of nearest neighbors in the com-
plex plane, i.e., for each eigenvalue z0, one identifies the
eigenvalue z1 for which s � jz1 2 z0j is a minimum [1].
Clearly, this prescription is not unique, but it is the most
© 1999 The American Physical Society
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natural choice and, more importantly, the only choice for
which analytical results are available. After ensemble av-
eraging, one obtains a function P�s, z0� which, in general,
depends on z0. However, the dependence on z0 can be
eliminated by unfolding the spectrum, i.e., by applying
a local rescaling of the energy scale so that the average
spectral density is constant in a bounded region in the
complex plane and zero outside. This will be discussed
below. After unfolding, a spectral average over z0 yields
P�s�. Of course, the question of whether, for a given data
set, the average behavior of the spectral density can in-
deed be separated from the fluctuations has to be answered
empirically.

In the Ginibre ensemble, the average spectral density
is already constant inside a circle and zero outside,
respectively [6]. In this case, unfolding is not necessary,
and P�s� is given by [1]

PG�s� � cp�cs� (3)

with

p�s� � 2s lim
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where en�x� �
Pn

m�0 xm�m! and c �
R`

0 ds sp�s� �
1.1429 . . . . This result holds for strongly non-Hermitian
matrices, i.e., for Re�z� � Im�z� on average. In the
regime of weak non-Hermiticity [7], where the typical
magnitude of the imaginary parts of the eigenvalues is
equal to the mean spacing of the real parts, the RMT
prediction deviates from Eq. (3). (Our definitions differ
from those of Ref. [7] by a factor of i so that in our
case it would be more appropriate to speak of weak
non-anti-Hermiticity.) We shall comment on this regime
below. For uncorrelated eigenvalues in the complex
plane, the Poisson distribution becomes [1]

PP̄�s� �
p

2
se2ps2�4. (5)

We now introduce a simple method to unfold complex
spectra. This method will then be applied to the Dirac
spectrum on the lattice at various values of m fi 0, and
the resulting P�s� will be compared to Eqs. (3) and (5).
Assuming that the spectral density has an average and a
fluctuating part, r�x, y� � rav �x, y� 1 rfl�x, y�, we need
to find a map

z0 � x0 1 iy0 � u�x, y� 1 iy�x, y� , (6)

such that rav �x0, y0� � 1. Conservation of the prob-
ability implies that rav �x0, y0�dx0dy0 � dx0dy0 �
rav �x, y�dxdy. Hence, rav �x, y� is the Jacobian of the
transformation from �x, y� to �x0, y0�,

rav �x, y� � j≠xu≠yy 2 ≠yu≠xyj . (7)

The left-hand side of Eq. (7) is given by the data.There
are infinitely many ways to choose the functions u and
y in Eq. (6) so that Eq. (7) is satisfied. (In general,
a conformal map (6) which fulfills Eq. (7) can only be
constructed if rav �x, y� satisfies special conditions.) We
choose y0 � y�x, y� � y which yields rav �x, y� � j≠xuj
and, thus,

x0 � u�x, y� �
Z x

2`
dt rav �t, y� . (8)

This corresponds to a one-dimensional unfolding in strips
parallel to the real axis. For a fixed bin in y, rav �x, y� is
obtained by fitting r�x, y� to a low-order polynomial.

Let us now discuss how the lattice data were obtained.
The simulations were done with gauge group SU(3) on
a 63 3 4 lattice using b � 6�g2 � 5.2 in the confine-
ment region and b � 5.4 in the deconfinement region for
Nf � 3 flavors of staggered fermions of mass ma � 0.1.
For each parameter set, we sampled 50 independent con-
figurations. The gauge field configurations were genera-
ted at m � 0, and the chemical potential was added to
the Dirac matrix afterwards. This procedure requires an
explanation, since it is known that the quenched approxi-
mation at m fi 0 is unphysical [5]. However, despite se-
rious efforts [15] there is currently no feasible solution to
the problem of a complex weight function in lattice simu-
lations. In a random matrix model, the statistical effort to
generate configurations including the complex Dirac de-
terminant was shown to grow exponentially with m2N ,
where N is the lattice size [16].

Typical eigenvalue spectra are shown in Fig. 1 for four
different values of m (in units of 1�a) at b � 5.2. As

FIG. 1. Scatter plot of the eigenvalues of the Dirac operator
(in units of 1�a) in the complex plane at various values of m for
a typical configuration (generated at m � 0) in the confinement
region at b � 5.2.
485



VOLUME 83, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 19 JULY 1999
expected, the size of the real parts of the eigenvalues
grows with m, consistent with Ref. [17]. Since the
average spectral density is not constant, we have to apply
the unfolding method defined above. Figure 2 shows
the effect of the unfolding procedure on the eigenvalue
density in the complex plane. P�s� is then constructed
from the unfolded density and normalized such thatR

`
0 ds sP�s� � 1.
We have performed several checks of our unfolding

method. (i) If only parts of the spectral support are
considered, the results for P�s� do not change. This
means that spectral ergodicity holds. (ii) If the spectral
density has “holes” (see Fig. 1 for m � 1.0 and 2.2), we
split the spectral support into several pieces and unfold
them separately. This is justified by spectral ergodicity.
(iii) Unfolding each spectrum separately and ensemble
unfolding yield identical results for P�s�. (iv) The results
for P�s� are stable under variations of the degree of the
fit polynomial and of the bin sizes in x and y. Thus,
we can conclude that it was indeed possible with our
unfolding method for complex spectra to separate the
average spectral density from the fluctuations, which is
the prerequisite for comparisons with analytical RMT
predictions.

Our results for P�s� are shown in Fig. 3. There are
minor quantitative but no qualitative differences between
the confinement and deconfinement phases, which is
consistent with our findings at m � 0 (second reference
of [12]). As a function of m, we expect to find a transition
from Wigner to Ginibre behavior in P�s�. This is indeed
seen in the figures. For m � 0.1, the data are still
very close to the Wigner distribution of Eq. (2) whereas
for 0.5 # m # 0.7 (m � 0.7 not shown) we observe
nice agreement with the Ginibre distribution of Eq. (3).
Values of m in the crossover region between Wigner
and Ginibre behavior �0.1 , m , 0.3� correspond to the
regime of weak non-Hermiticity mentioned above. In
this regime, the derivation of the spacing distribution is
a very difficult problem, and the only known analytical
result is P�s, z0� for small s, where z0 is the location
in the complex plane (i.e., no unfolding is performed)

FIG. 2. Eigenvalue density of the Dirac matrix in the complex
plane for a typical configuration at b � 5.2 and m � 0.7. The
left plot shows the eigenvalues before unfolding, the right plot
after unfolding, respectively.
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FIG. 3. Nearest-neighbor spacing distribution of the Dirac
operator eigenvalues in the complex plane for various values
of m in the confinement (b � 5.2, left) and deconfinement
(b � 5.4, right) phase. The histograms represent the lattice
data. The solid curve is the Ginibre distribution of Eq. (3),
the short-dashed curve in the upper two rows the Wigner
distribution of Eq. (2), and the dotted curve in the lowest row
the Poisson distribution of Eq. (5), respectively.
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[7]. The small-s behavior of Eqs. (2) and (3) is given
by PW �s� ~ s2 and PG�s� ~ s3, respectively, and in the
regime of weak non-Hermiticity we have P�s, z0� ~ sa

(for s ø 1) with 2 , a , 3 [7]. This smooth crossover
from a � 2 to a � 3 is also observed in our unfolded
data.

For m . 0.7 the lattice results for P�s� deviate substan-
tially from the Ginibre distribution. It is also evident from
the appearance of the spectra for m � 1.0 and 2.2 in Fig. 1
that the global spectral density of the lattice data is very
different from that of the Ginibre ensemble. While this
does not immediately imply that the local spectral fluctu-
ations are also different, it is an indication for qualitative
changes. In particular, the results for m � 2.2 in Fig. 3
could be interpreted as Poisson behavior, corresponding
to uncorrelated eigenvalues. In the Hermitian case at fi-
nite temperature T , lattice simulations show a transition to
Poisson behavior only for b ! ` when the physical box
size shrinks and the theory becomes free [12]. Here, how-
ever, we have to remember that the chemical potential was
neglected in the generation of the equilibrium gauge fields
so that conclusions about the physical content of this ob-
servation should be drawn with care. Specifically, we are
not entitled to make definite statements on possible connec-
tions between the finite-density phase transition (expected
at smaller values of m) and the deviations from Ginibre
behavior. A more plausible explanation of the transition
to Poisson behavior is provided by the following two (re-
lated) observations. First, for large m the terms containing
em in Eq. (1) dominate the Dirac matrix, giving rise to un-
correlated eigenvalues. Second, for m . 1.0 the fermion
density on the 63 3 4 lattice reaches its maximum value
given by the Pauli exclusion principle. In any event, the
mechanisms behind this transition are interesting and de-
serve further study.

If a solution to the problem of the generation of
configurations with a complex weight function becomes
available, it would be very interesting to redo our analysis.
Since previous computations in the deconfinement phase
at m � 0 have verified the RMT predictions [12], and
since the present simulations at b � 5.4 are already in
the deconfinement phase for all values of m, we expect
the observed Ginibre behavior to persist. Of course, this
should be verified by a full finite-density simulation.

In conclusion, we have proposed a general unfolding
procedure for the spectra of non-Hermitian operators.
This procedure was applied to the QCD lattice Dirac
operator at finite chemical potential. Agreement of the
nearest-neighbor spacing distribution with predictions of
the Ginibre ensemble of non-Hermitian RMT was found
between m � 0.5 and m � 0.7 in both confinement
and deconfinement phases. The deviations from Ginibre
behavior for smaller values of m are well understood,
whereas the deviations for larger values of m toward
a Poisson distribution require a better understanding of
QCD at finite density. In this context, an interesting
observation is that the results for P�s� in the non-
Hermitian case are rather sensitive to m whereas they
are very stable under variations of T in the Hermitian
case [12]. It would be interesting to apply our unfolding
method to other non-Hermitian systems [4,18].
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