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We describe the explicit construction of groves, the smallest gauge invariant classes of tree Feynman
diagrams in gauge theories. The construction is valid for gauge theories with any number of group
factors which may be mixed. It requires no summation over a complete gauge group multiplet of
external matter fields. The method is therefore suitable for defining gauge invariant classes of Feynman
diagrams for processes with many observed final state particles in the standard model and its extensions.

PACS numbers: 11.15.Bt, 12.15.Ji
The quest for a theory of flavor demands precise calcula-
tions of high energy scattering processes in the framework
of the standard model and its extensions. At the Fermilab
Tevatron, the CERN Large Hadron Collidor, and at a future
e1e2 linear collider, final states with many detected parti-
cles and tagged flavor will be the primary handle for testing
theories of flavor. Calculations of cross section with many
particle final states remain challenging and it is of cru-
cial importance to be able to concentrate on the important
parts of the scattering amplitude for the phenomena under
consideration.

In gauge theories, however, it is impossible to sim-
ply select the signal diagrams and to ignore irreducible
backgrounds. The same subtle cancellations among the
diagrams in a gauge invariant subset that lead to the cele-
brated good high energy behavior of gauge theories such as
the standard model, come back to haunt us if we acciden-
tally select a subset of diagrams that is not gauge invariant.
The results from such a calculation have no predictive
power, because they depend on unphysical parameters in-
troduced during the gauge fixing of the Lagrangian. It
must be stressed that not all diagrams in a gauge invari-
ant subset have the same pole structure and that a selection
based on “signal” or “background” will not suffice.

The subsets of Feynman diagrams selected for any cal-
culation must therefore form a gauge invariant subset, i.e.,
together they must already satisfy the Ward and Slavnov-
Taylor identities to ensure the cancellation of contribu-
tions from unphysical degrees of freedom. In Abelian
gauge theories, such as quantum electrodynamics (QED),
the classification of gauge invariant subsets is straightfor-
ward and can be summarized by the requirement of in-
serting any additional photon into all connected charged
propagators. This situation is similar for gauge theories
with simple gauge groups, the difference being that the
gauge bosons are carrying charge themselves. For non-
simple gauge groups such as the standard model, which
even includes mixing, the classification of gauge invariant
subsets is much more involved.
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Indeed, up to now, the classification of gauge invariant
subsets in the standard model has been performed in an ad
hoc fashion (cf. [1,2]). In this paper we present an explicit
construction of groves, the smallest gauge invariant classes
of tree Feynman diagrams in gauge theories. Our construc-
tion is not restricted to gauge theories with simple gauge
groups. Instead, it is applicable to gauge groups with any
number of factors, which can even be mixed, as in the stan-
dard model. Furthermore, it does not require a summation
over complete multiplets and can therefore be used in fla-
vor physics when members of weak isospin doublets (such
as charm or bottom) are detected separately. Our method
constructs the smallest gauge invariant subsets. Below we
show examples in which they are indeed smaller than those
derived from looking at the final state alone [1,2].

We expect that our methods will also have applications
in loop calculations. However, some of our current proofs
use properties of tree diagrams, and further research is
required in this area.

In unbroken gauge theories, the permutation symmetry
of external gauge quantum numbers can be used to sub-
divide the scattering amplitude corresponding to a grove
further into gauge invariant subamplitudes [3]. In this de-
composition, each Feynman diagram contributes to more
than one subamplitude. It is not yet known how to per-
form a similar decomposition systematically in the stan-
dard model, because the entanglement of gauge couplings
and gauge boson masses complicates the structure of the
amplitudes. Our construction of the groves provides a
necessary first step towards the solution of this important
problem.

Forests.—We introduce basic notions in the case of un-
flavored scalar f3 and f4 theory. In the absence of selec-
tion rules, the diagrams S1, S2, and S3 in Fig. 1 must have
the same coupling strength to ensure crossing invariance.
If there are additional symmetries, as in the case of gauge
theories, the coupling of S4 will be fixed relative to S1,2,3.

We will call each exchange t4 $ t04 of two members of
the set T4 of all tree graphs with four external particles a
© 1999 The American Physical Society
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FIG. 1. The four-point diagrams �S1, S2, S3, S4�.

flip. These flips define a relation t4 ± t04 on T4, which is
true if, and only if, t4 and t04 are related by a flip. This
trivial relation on T4 has a nontrivial natural extension to
the set T �E� of all tree diagrams with a given external state
E: t ± t0 is true if, and only if, t and t0 are identical up to a
single flip of a four-point subdiagram. This relation allows
one to view the set T �E� of all tree diagrams as the vertices
of a graph F�E�,

F�E� � ��t, t0� [ T �E� 3 T �E� j t ± t0� , (1)

where the edges of the graph are formed by the pairs of
diagrams related by a single flip. To avoid confusion, we
will refer to the graph F�E� as forest and to its vertices
as Feynman diagrams. For lack of space, we have to
introduce some mathematical concepts rather tersely and
will give a more self-contained presentation elsewhere [4].

Already the simplest nontrivial example of such a forest,
the 15 tree diagrams with five external particles in unfla-
vored f3 theory, as shown in Fig. 2, displays an intriguing
structure. The most important property for our applica-
tions is as follows.

Theorem 1: The unflavored forest F�E� is connected
for all external states E.

This is easily proved by induction on the number of
particles in the external state. This theorem shows that it is
possible to construct all Feynman diagrams by visiting the
nodes of F�E� along successive applications of the flips in
Fig. 1.

In physics applications we have to deal with different
particles. Therefore we introduce flavored forests, where
the admissibility of elementary flips t4 ± t04 depends on the
four particles involved through the Feynman rules for the
vertices in t4 and t04.

In order to simplify the combinatorics when counting
diagrams for theories with more than one flavor, we will
below treat all external particles as outgoing. The physical
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FIG. 2. The forest of the 15 five-point tree diagrams in
unflavored f3 theory. The diagrams are specified by fixing
vertex 1 and using parentheses to denote the order in which
lines are joined at vertices.
FIG. 3. The four-point diagrams �tF,1
4 , t

F,2
4 , t

F,3
4 � related by

flavor flips.

amplitudes are obtained later by selecting the incoming
particles in the end. Ward identities, etc., will be proved
for the latter physical amplitudes, of course.

Groves.—Our method is based on the observation that
the flips in gauge theories fall into two different classes:
the flavor flips in Fig. 3, which involve four matter fields
which carry gauge charge and possibly additional con-
served quantum numbers, and the gauge flips in Figs. 4
and 5, which also involve gauge bosons (another diagram,
t
G,8
4 ~ f2A2, has to be added for scalar matter fields that

appear in extensions of the standard model: SUSY part-
ners, leptoquarks, etc.). In gauge theories with more than
one factor, such as the standard model, the gauge flips are
extended in the obvious way to include all four-point func-
tions with at least one gauge boson. Commuting gauge
group factors lead, of course, to separate sets. In sponta-
neously broken gauge theories, the Higgs and Goldstone
boson fields contribute additional flips, in which they are
treated like gauge bosons (see [4] for a complete list and
applications). Ghosts can be ignored at tree level.

The flavor flips (Fig. 3) are special because they can
be switched off without spoiling gauge invariance by in-
troducing a horizontal symmetry that commutes with the
gauge group. Such a horizontal symmetry is similar to the
replicated generations in the standard model, but if three
generations do not suffice, it can also be introduced arti-
ficially. A typical example is Bhabha scattering, where
the s-channel and the t-channel diagrams are separately
gauge invariant, because we can replace one electron line
by a muon line without violating gauge invariance. Simi-
larly, the charged current and neutral current contributions
in ud ! ud can be switched on and off by assuming that
two of the four quarks are from a different generation.

This observation suggests that we introduce two rela-
tions:

t ≤ t0 () t and t0 related by a gauge flip (2)

and

t ± t0 () t and t0 related by a flayor or gauge flip.
(3)

These two relations define two different graphs with the
same set T �E� of all Feynman diagrams as vertices:

FIG. 4. The four-point diagrams �tG,1
4 , t

G,2
4 , t

G,3
4 , t

G,4
4 � related

by gauge flips.
481



VOLUME 83, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 19 JULY 1999
FIG. 5. The four-point diagrams �tG,5
4 , t

G,6
4 , t

G,7
4 � related by

gauge flips in the case of fermionic matter.

F�E� � ��t, t0� [ T �E� 3 T �E� j t ± t0� (4)

and

G�E� � ��t, t0� [ T �E� 3 T �E� j t ≤ t0� . (5)

As we have seen above in Bhabha scattering, it is in general
not possible to connect all pairs of diagrams in G�E� by a
series of gauge flips. Thus there will be more than one
connected component. For brevity, we will continue to
denote the flavor forest F�E� as the forest of the external
state E and we will denote the connected components
Gi�E� of the gauge forest G�E� as the groves of E. Since
t ≤ t0 ) t ± t0, we have

S
i Gi�E� � G�E� # F�E�, i.e.,

the groves are a partition of the forest.
Theorem 2: The forest F�E� is connected if the fields

in E are not distinguished by conserved quantum numbers
other than the gauge charges. The groves Gi�E� are the
minimal gauge invariant classes of Feynman diagrams.

Here we give a sketch of the proof, which will be
presented in more detail elsewhere [4]. As we have seen,
the theorem is true for the four-point diagrams and we
can use induction on the number of external matter fields
and gauge bosons. Since the matter fields are carrying
conserved charges, they can only be added in pairs.

If we add an additional external gauge boson to a gauge
invariant amplitude, the diagrammatical proof of the Ward
and Slavnov-Taylor identities in gauge theories requires
us to sum over all ways to attach a gauge boson to con-
nected gauge charge carrying components of the Feynman
diagrams. However, the gauge flips are connecting pairs
TABLE I. The groves for all processes with six external massless fermions and bremsstrahlung in the standard model (without
QCD).

External fields �E� Diagrams Classes

uūuuuu 144 18 3 8
uūuuuug 1008 18 3 24 1 36 3 16
uūuudd 92 4 3 111 6 3 8
uūuuddg 716 4 3 95 1 6 3 24 1 12 3 16
�1�2uudd 35 1 3 11 1 38 3 8
�1�2uuddg 262 11 3 94 1 3 3 24 16 3 16
�1ndudd 20 2 3 10
�1nduddg 152 2 3 76
�1�2�1ndu 20 2 3 10
�1�2�1ndug 150 2 3 75
�1n�2ndd 19 1 3 9 1 2 3 4 1 1 3 2
�1n�2nddg 107 1 3 59 1 2 3 12 1 2 3 8 1 2 3 4
�1n�2n�1�2 56 4 3 9 1 4 3 4 1 2 3 2
�1n�2n�1�2g 328 4 3 58 1 4 3 12 1 4 3 8 1 4 3 4
�1n�2nnn 36 4 3 6 1 6 3 2
�1n�2nnng 132 4 3 26 1 2 3 6 1 4 3 4
nnnnnn 36 18 3 2
482
FIG. 6. The two ways of adding a matter field pair.

of neighboring insertions and can be iterated along gauge
charge carrying propagators. Therefore no partition of the
forest F�E� that is finer than the groves Gi�E� preserves
gauge invariance.

If we add an additional pair of matter fields to a gauge
invariant amplitude, we have to consider two separate
cases, as shown in Fig. 6. If the new flavor does not
already appear among the other matter fields, the only way
to attach the pair is through a gauge boson. If the new
flavor is already present, we can also break up a matter
field propagator and connect the two parts of the diagram
with a new gauge propagator. Since it is always possible to
introduce a new flavor, either physical or fictitious, without
breaking gauge invariance, these cases fork off separately
gauge invariant classes every time we add a new pair of
matter fields. On the other hand, the cases in Fig. 6 are
related by a flavor flip. Therefore F�E� remains connected,
the Gi�E� are separately gauge invariant and the proof is
complete.

Earlier attempts [1,2] have used physical final states as a
criterion for identifying gauge invariant subsets. We have
already shown that the groves are minimal and therefore
never form a more coarse partition than the one derived
from a consideration of the final states alone. Below we
shall see examples where the groves do indeed provide a
strictly finer partition.

In a practical application, one calculates the groves for
the interesting combinations of gauge quantum numbers,
such as weak isospin and hypercharge in the standard
model, using an external state where all other quantum
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FIG. 7. The forest of size 71 for the process gg ! ud̄dū in
the standard model (without QCD, CKM mixing, and masses
in unitarity gauge) with one grove of size 31, two of size 12,
and two of size 8. The solid lines represent gauge flips and the
dotted lines represent flavor flips.

numbers are equal. The physical amplitude is then ob-
tained by selecting the groves that are compatible with the
other quantum numbers of the process under consideration.
Concrete examples are considered in the next section.

Application.—In Table I, we list the groves for all pro-
cesses with six external massless fermions in the standard
model, with and without single photon bremsstrahlung, and
without quantum chromodynamics (QCD) and Cabibbo-
Kobayashi-Maskawa (CKM) mixing. We can easily in-
clude fermion masses, QCD, and CKM mixing within the
same formalism, but the table would have to be much
larger, because additional gluon, Higgs, and Goldstone dia-
grams appear, depending on whether the fermions are mas-
sive or massless, or colored or uncolored. In the table,
cases with identical SU�2�L ≠ U�1�Y quantum numbers are
listed only once, and cases with different T3 and Y are
listed separately only if the vanishing of the electric charge
removes diagrams from a grove.

The familiar nonminimal gauge invariant classes for
e1e2 ! f1f̄2f3f̄4 [1] are included in Table I as special
cases. The LEP2 WW-classes CC09, CC10, and CC11
are immediately obvious. As a not quite so obvious
example, the process e1e2 ! m1m2t1t2 has the same
SU�2�L quantum numbers as uū ! uūuū. We can read
off Table I that, in the case of identical pairs, there are
18 groves, of eight diagrams each. If all three pairs are
different, the number of groves has to be divided by 3!,
because we are no longer free to connect the three particle-
antiparticle pairs arbitrarily. Thus there are 24 diagrams
contributing to the process e1e2 ! m1m2t1t2 and they
are organized in three groves of eight diagrams each. Any
diagram in a grove can be reached from the other seven
by exchanging the vertices of the gauge bosons on one
fermion line and by exchanging Z0 and g. Since there
are no non-Abelian couplings in this process, the separate
gauge invariance of each grove could also be proven,
as in QED, by varying the hypercharge of each particle:
A ~ A1q2

eqmqt 1 A2qeq2
mqt 1 A3qeqmq2

t .
In Fig. 7 we show the forest for the process gg ! ud̄dū

in the standard model. The grove in the center consists
of the 31 diagrams with charged current interactions (the
set CC21 of [2]). The four small groves of neutral
current interactions are connected with the rest of the forest
through the charged current grove only.

The groves can now be used to select the Feynman dia-
grams to be calculated by other means. However, we note
that it is also already possible to calculate the amplitude
with little additional effort during the construction of the
groves by keeping track of momenta and couplings in the
diagram flips.

Automorphisms.—The forest and groves which we have
studied appear to be very symmetrical in the neighborhood
of any vertex. However, the global connection of these
neighborhoods is twisted, which makes it all but impossi-
ble to draw the graphs in a way that makes these apparent
symmetries manifest.

Nevertheless, one can turn to mathematics [5] and con-
struct the automorphism groups Aut�F�E�� and Aut�Gi�E��
of the forest F�E� and the groves Gi�E�, i.e., the group
of permutations of vertices that leave the edges invariant.
These groups turn out to be larger than one might expect.
For example, the group of permutations of the 71 vertices
of the forest F�gg ! ud̄dū� in Fig. 7, which leaves the
edges invariant, has 128 elements. Similarly, the automor-
phism group of the forest in Fig. 2 has 120 � 5! elements.
The study of these groups and their relations might enable
us to construct gauge invariant subsets directly. This is,
however, beyond the scope of the present paper and will
be considered elsewhere.
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