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Determination of Tip-Sample Interaction Potentials by Dynamic Force Spectroscopy
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We introduce a new method which allows the precise determination of the tip-sample interaction
potentials with an atomic force microscope and avoids the so-called “jump to contact” of the tip
to the sample surface. The method is based on the measurement of the resonance frequency as
function of the resonance amplitude of the oscillated cantilever. The application of this method to
model potentials and to experimental data, obtained for a graphite sample and a silicon tip in ultrahigh
vacuum, demonstrates its reliability.

PACS numbers: 07.79.–v, 61.16.Ch, 46.80.+ j
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With the invention of theatomic force microscope
(AFM) in 1986 [1], it became possible to measure th
interaction forces between a sharp tip and a samp
surface on the nanometer scale. Since these days,
instrument has been widely used to study tip-samp
interactions for various material combinations (see, e.
Refs. [2–6]). Unfortunately, such investigations are ofte
strongly hindered close to the sample surface by
instantaneous jump of the tip to the sample surface. T
origin of this so-called “jump to contact” is an instability
in the effective tip-sample potential at the position wher
the actual force gradient of the tip-sample interactio
is larger than the spring constant of the cantileve
This effect leads to a hysteresis and discontinuities
the measuredforce-distance curves and complicates the
interpretation [3,7]. The easiest way out of this dilemm
would be to use stiffer levers, but this choice limits th
achievable resolution [5,7,8]. Therefore, Jarviset al. [5]
developed a magnetically controlled feedback to resist t
jump to contact.

This problem can also be avoided by oscillating th
cantilever [9,10]. If the oscillation amplitude is large
enough, the jump to contact of the tip is prevented by th
restoring force of the cantilever. This feature is used
the dynamic mode of the AFM [11], where the cantileve
is vibrated with itsresonance frequency f near the sample
surface (see Fig. 1). In contrast to the type of experimen
described above, the tip-sample force is not detected
this mode. Instead, the measured quantity is the chan
of the resonance frequency—thefrequency shift Df —
caused by the tip-sample interaction.

For a given tip-sample interaction law, various method
were suggested to calculate this frequency shift [10,12
15]. In general, however, the inversed problem will b
of more interest: How can the tip-sample interaction
be determined from frequency shift data? A first step
towards the answer of this question has been done
Gotsmannet al. [16] who developed a fully numerical
algorithm to fit the results of a computer simulation t
experimental frequency shift versus distance data.
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In this Letter, we show how the tip-sample interactio
potential (and force) can be precisely determined from t
analysis of the frequency shiftDf as a function of the
resonance amplitudeA. The advantage of this method
is that comparatively simple analytical formulas are us
to compute the tip-sample potential fromDf�A� curves
allowing a quick and direct access to the tip-samp
interaction without a jump to contact.

The main idea of this new method can be understo
by taking a closer look at the reason for the shift of th
resonance frequency in the dynamic mode (see Fig. 1).
the cantilever oscillates far away from the sample surfa
the tip moves in the parabolic cantilever potentialVc
[dotted line in Fig. 1(b)], and its oscillation is harmonic
In such a case, the tip motion is sinusoidal, and t
resonance frequency is given by the eigenfrequency
the cantileverf0 which is independent of the oscillation
amplitude. If the vibrating cantilever is brought close t
the sample surface, the potential which determines
oscillation is modified. The resulting effective potentia
U (solid line) is given by the sum of the parabolic

FIG. 1. A schematic view of the experimental setup and t
used definitions. (a) A cantilever with integrated tip oscillate
with its resonance frequency and a well-defined amplitude n
the sample surface. (b) The effective tip-potential (solid lin
is the sum of the parabolic cantilever potential (dotted line) a
the tip-sample interaction potential (dashed line). To calcula
the tip-sample potential from the frequency shift, it is assum
that the “right” part of the effective potential (z . 0) can be
replaced by the original parabolic cantilever potential in goo
approximation (see text).
© 1999 The American Physical Society
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potential and the tip-sample interaction potential Vint
(dashed line). This effective potential has an asymmetric
shape due to the tip-sample interaction. Consequently,
the resulting tip oscillation becomes anharmonic, and the
resonance frequency of the oscillation now depends on the
resonance amplitude. The effective potential experienced
by the tip changes also with the cantilever-sample distance
(distance between tip and sample, if the cantilever is
undeflected). Therefore, the frequency shift depends on
two parameters: the cantilever-sample distance and the
resonance amplitude [17]. The changes of the frequency
shift caused by the damping of the cantilever can be
neglected in ultrahigh vacuum, if the energy loss due
to the damping of the cantilever is compensated using
the frequency modulation scheme described in Ref. [18].
As a result, the resonance frequency can be measured
independently from the actual damping [8,18,19].

For a given effective potential U�z�, the period of
oscillation T can be calculated as a function of the energy
of the system E by the integral

T �E� �
p

2m
Z z2

z1

dzp
E 2 U�z�

, (1)

where m is the effective mass of the oscillating system
[20]. Unfortunately, it is not possible to solve the inverted
problem. The effective potential U�z� cannot be deter-
mined from the function T �E� without further assump-
tions about the potential U�z�, since the inverted function
z�U� is two valued: Each value of U corresponds to two
different values of z [20].

However, in our special case, this problem can be
solved by dividing the potential U�z� into two parts, “ left”
and “ right” of its minimum as indicated in Fig. 1(b).
Since the tip-sample interaction potential Vint�z� is usually
very small on the right side for typical cantilever-sample
distances, it can be assumed that this part of U�z� is nearly
parabolic

U�z� �
1
2

cz2 for z $ 0 , (2)

where c is the spring constant of the cantilever. For
convenience, we define the origin of the z and U axes
at the position of the minimum of the effective potential.
As a result of the assumption Eq. (2), the integration of
Eq. (1) from 0 to z2 leads to

T �E� �
T0

2
1

p
2m

Z 0

z1

dzp
E 2 U�z�

, (3)

where T0 � 1�f0 � 2p
p

m�c is the period of oscillation
of the free cantilever. Now the function U�z� is reversible
for all z # 0, and the integral in Eq. (3) can be inverted.
Following Ref. [20], we obtain

z1�U� �
1

p
p

2m

Z U

0

T0

2 2 T �E�
p

U 2 E
dE . (4)

Usually, it is the frequency shift Df :� f0 2 f and not
the period of oscillation T � 1�f which is measured in
dynamic force microscopy. Therefore, it is advantageous
to transform Eq. (4) to

z1�A� � 2
Z A

0

f0 2 Df�A0�
f0 1 Df�A0�

A0

p
A2 2 A02

dA0, (5)

where A represents the amplitude in the parabolic part of
the effective potential (see Fig. 1). Using this formula
it is straightforward to calculate the position z1�A� from
a frequency shift versus amplitude curve Df�A�, and to
determine the tip-sample interaction potential from

Vint�z1� �
1
2

c�A�z1�2 2 z2
1� . (6)

If this method is applied to experimental frequency shift
versus amplitude curves, it has to be taken into account
that it is the amplitude

Aexp :�
1
2

�A 2 z1� (7)

—and not the amplitude A sketched in Fig. 1—which
is measured in a realistic AFM experiment. This is
considered in the following by a simple search algorithm,
which varies the amplitude until condition Eq. (7) is
fulfilled.

To prove the reliability of this new method, we com-
puted a frequency shift versus amplitude curve for a given
tip-sample interaction potential by solving numerically the
corresponding equation of motion [15]. Afterwards we
have calculated the reconstructed potential with the de-
scribed method from the frequency shift versus amplitude
data and compared the original and reconstructed potential.
This simulation is shown in Fig. 2 with the example of the
potential given by Peréz et al. [21], which describes the in-
teraction between a monoatomic silicon tip and an adatom
of the Si�111�-�5 3 5� surface [solid line in Fig. 2(a); both
short-range and long-range (van der Waals) forces are in-
cluded]. The f�Aexp� curve calculated with this potential
at a typical cantilever-sample distance of 100 Å is plotted
in Fig. 2(b) for discrete values. A comparison between
the original (solid line) and the reconstructed tip-sample
potential (symbols) plotted in Fig. 2(a) demonstrates the
quality of the proposed method.

The same high agreement between original and recon-
structed potentials is obtained for other tip-sample inter-
actions and different cantilever-sample distances, as long
as the assumption Eq. (2) applies. The detailed analysis
shows that the method is unique. Moreover, the system-
atic error made by assumption Eq. (2) can be neglected
for realistic tip-sample potentials if the cantilever-sample
distance is large enough.

An application of the new method to experimental data
is shown in Fig. 3 for a silicon tip and a graphite sample.
The experiments were performed with a home-built atomic
force microscope for operation in ultrahigh vacuum and at
low temperatures, which works with the frequency modu-
lation detection scheme [18]. A detailed description of the
microscope is given in Ref. [22]. The rectangular-shaped
cantilever used for this study was made of monocrystalline
4781
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FIG. 2. A simulation of the proposed method. (a) The tip-
sample potential given by Peréz et al. [21] (solid line) used
for the calculation of the Df�Aexp� curve shown in (b).
The reconstructed potential computed from the Df�Aexp� data
given in (b) is plotted by symbols. (b) The frequency shift
versus amplitude curve Df�Aexp� calculated with the tip-sample
potential shown in (a).

silicon with a spring constant of 38 N�m and an eigen-
frequency of 177 kHz. The tip was sputtered in situ with
argon prior to the measurements to obtain a clean, oxygen-
free Si tip. The graphite sample was cleaved in situ at
room temperature at a pressure below 1029 mbar, and
subsequently inserted into the microscope (base pressure
,10210 mbar). A series of experiments were carried
out measuring the frequency shift versus the resonance
amplitude for different cantilever-sample distances. The
experimental data presented here were recorded with a
zero bias voltage between tip and sample. The Df�Aexp�
curves displayed in Fig. 3(a) were measured for four dif-
ferent cantilever-sample distances at room temperature.
All curves show the same typical overall behavior, but dif-
fer significantly in quantity, depending on the cantilever-
sample distance.

Despite these differences, the reconstruction of the tip-
sample potential using these experimental data sets leads
to identical results [see Fig. 3(b)]. The corresponding
tip-sample forces are shown in Fig. 3(c). The fact that
4782
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FIG. 3. Experimental results obtained with the proposed
method. (a) Four measured Df�Aexp� curves recorded in ul-
trahigh vacuum with a silicon tip and a graphite sample for
various cantilever-sample distances. The curves are individu-
ally shifted along the x axes in order to fit all into the same
graph. The subtracted offset is 216, 162, 130, and 108 Å, re-
spectively. (b) The tip-sample potential calculated from the
experimental data shown in (a). Note that all curves are nearly
identical despite the different Df�Aexp� curves. The zero point
of the x axis is arbitrarily chosen. (c) The corresponding tip-
sample forces.

tip-sample potentials and forces can be determined with
this accuracy without jump to contact and hysteresis
demonstrates clearly the advance of this experimental
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method in comparison to the usually measured force-
distance curves. The depth of the measured potential is
�40 eV , which is much more than the expected binding
energy between a sharp monoatomic tip and a sample
surface (,6 eV; see Fig. 2). This feature indicates that
more than one tip atom interacts with the sample surface,
which can be caused by two reasons: (i) The tip is blunt
and/or (ii) elastic tip-sample forces deform the shape of
the tip.

In summary, we presented a new method to measure
tip-sample interaction potentials using the dynamic mode
of an atomic force microscope. In contrast to the usually
measured force-distance curves, this procedure avoids a
jump to contact of the tip to the sample surface. Therefore,
potential and forces between tip and sample are obtained
without hysteresis and discontinuities caused by this effect.
The precision of the method is demonstrated by simulation
and experiment.

Consequently, the proposed method might be used in
the future for the three-dimensional dynamic force spec-
troscopy of the tip-sample interaction potential with high
lateral resolution. Since atomic resolution is obtained rou-
tinely in dynamic atomic force microscopy on various ma-
terials (see, e.g., Refs. [23–26]), a similar lateral resolution
can be expected with the proposed dynamic force spec-
troscopy method. Although it may seem puzzling to de-
termine tip-sample interactions through the measurement
of a frequency, the presented formulas give a quick and
direct access to the tip-sample interaction potential and
force. This feature offers the opportunity to calculate them
“on-line” during data acquisition and to control the tip-
sample interaction force via the maximal applied ampli-
tude. Hence it is straightforward either to avoid a repulsive
contact between tip and sample during a measurement or
to measure even (repulsive) elastic tip-sample forces.
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