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We show that U(1) Yang-Mills theory on noncommutative �4 can be renormalized at the one-loop
level by multiplicative dimensional renormalization of the coupling constant and fields of the theory.
We compute the beta function of the theory and conclude that the theory is asymptotically free. We
also show that the Weyl-Moyal matrix defining the deformed product over the space of functions on �4

is not renormalized at the one-loop level.
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Field theories on noncommutative spaces may play
an important role in unraveling the properties of nature
at the Planck scale [1,2]. Yang-Mills theories on the
noncommutative torus occur in compactifications of M
theory [2], and there is already a good many papers where
M theory on noncommutative tori has been studied [3].
Still, it has not been established yet that these field theories
are well defined at the quantum level. Although a few
initial steps were taken in Ref. [1] (see also [4]), the very
definition of quantum field theory over noncommutative
spaces (the analog of the standard Wightman-Osterwalder-
Schrader axioms, scattering theory, etc.) is yet to be
stated. Quantum field theories on fuzzy spheres [5] had
been studied previously and its UV finiteness established
[6]. Here the number of quantum degrees of freedom
is finite and hence it seems that the quantum theory
exists. This is not clear at all for field theories over
noncommutative spaces such as the noncommutative �4

[7], the noncommutative 3-tori [8], or the noncommutative
plane [9]. In these cases the quantum field theory has
UV divergences and there remains the question whether
these theories are renormalizable. It should be noticed
that for the theories at hand the interaction terms in Fourier
space are no longer polynomials in the momenta, and hence
it cannot be taken for granted that the renormalization
program (either perturbative or nonperturbative) works.

The purpose of this Letter is to analyze the one-loop
UV divergent structure of the simplest pure gauge the-
ory over the noncommutative �4. This theory is a U(1)
theory but it is not a free theory due to the noncommu-
tative character of the base space. Indeed, now the field
strength (curvature) is no longer linear in the gauge field
(connection).

Field equations over the noncommutative �4 can be
represented as equations over a deformation of the C�

algebra C`��4� of continuous complex-valued functions
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over �4 vanishing at infinity [10]. This deformation is
given by the Weyl product

� f � g� �x� �ZZ d4q
�2p�4

d4p
�2p�4 ei�q1p�xeivmnqmpn f�q�g�p� .

Here f�q� and q�p� are, respectively, the Fourier trans-
forms of f�x� and g�x�, and vmn is a constant antisym-
metric matrix of rank four. Connes’ noncommutative
geometry formalism gives mathematical rigor to the con-
cept of classical U(1) gauge field over such a noncommu-
tative space [11,12]. This gauge field is provided by a
real vector function, Am�x�, on �4. The field strength Fmn

for this gauge field now reads Fmn � ≠mAn 2 ≠nAm 1

i�Am, An�, where �Am, An� �x� � �Am � An� �x� 2 �An �
Am� �x� is the Moyal bracket.

The classical U(1) field theory over noncommutative �4

is given by the Yang-Mills functional

SYM �
1

4g2

Z
�Fmn � Fmn� �x� , (1)

where Fmn�x� is given above. This action is invariant
under gauge transformations which have the following
infinitesimal form: dAm�x� � ≠mu 1 i�Am, u� �x�.

The next task to tackle is the construction of a quan-
tum field theory whose classical counterpart is the
previous theory. What we mean by a quantum field
theory over a noncommutative space is by no means
obvious, e.g., which mathematical objects define the
quantum physics have not been properly established yet
(see Ref. [9] for discussions on this point). In this paper
we shall assume that the quantum theory is defined by
the Green functions of the theory, i.e., by the generating
functional
Z� j� � N
Z

Df�x�e2S1
R

d4xj�x�f�x� � Ne2Sint�d�dj�x�� exp

"
1
2

ZZ
d4xd4y j�x�P�x 2 y�j� y�

#
,

where f denotes generically the “fields” of the theory and
P�x 2 y� denotes the inverse of the kinetic term (quadratic
in the fields) in S. S and Sint denote, respectively, the
classical action over the noncommutative space in question
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and the interaction terms in S. The previous definition of
Z� j� is to be understood as a formal expansion in terms of
Feynman diagrams.

Since our Yang-Mills action is invariant under gauge
transformations, its kinetic term has no inverse and a
gauge-fixing term has to be introduced. We shall do
this in a consistent way by using the Becchi-Rouet-Stora
(BRS) formalism. Let us introduce the ghost fields c
and c, the gauge-fixing field B, and define the BRS
transformations as follows:

sAm�x� � Dmc�x� � ≠mc�x� 1 i�Am, c� �x�, sc�x� � B,

sB�x� � 0, sc�x� � 2�c � c� �x� .

To keep track of the renormalization of the composite
transformations sAm�x� and sc�x�, one also introduces
the external fields Jm�x� and H�x� which couple to
them [13]. The BRS invariant classical four-dimensional
action is

Scl � SYM 1 Sgf 1 Sext , (2)

where SYM has been given in Eq. (1) and

Sgf �
Z

d4xŝ

"
c �

√
a

2
B 2 ≠mAm

!#
�x� ,

Sext �
Z

d4x

√
Jm � sAm 1 H � sc

!
�x� .

Now, standard path integral formal manipulations lead
to the Slavnov-Taylor identity for the 1PI functional
G�Am, B, c, c; Jm, H�. This identity reads

S �G� �
Z

d4x

"
dG

dJm

dG

dAm

1
dG

dH
dG

dc
1 B

dG

dc

#
� 0 .

(3)

We shall see in this paper that, as far as our explicit
computations reach, no anomalies occur in the quantum
theory and that, indeed, a renormalized BRS invariant
1PI functional does exist. We shall be working only at
the one-loop level.

It is not difficult to see that one-loop UV divergent 1PI
Green functions are the following: GAA, GAAA, GAAAA,
Gcc, GcAc, GJc, GJAc, and GHcc, with obvious notation.
Notice that the Feynman rules from Eq. (2) are obtained
from the Feynman rules for Su(N) Yang-Mills theory
on commutative Euclidean space upon the replacement
fa1a2a3 ! 2 sinv�p2, p3�, p2 and p3 being, respectively,
the momenta carried by the lines with color index a2 and
a3. Hence, the counterpart in our U(1) theory of a Feyn-
man diagram, which is finite by power counting in the
standard SU(N) theory, will also be finite. Since no ac-
tion principle (see Ref. [13], and references therein) has
been shown to hold yet for field theories over noncom-
mutative spaces, we cannot carry out a cohomological
study of the renormalizability of the theory at hand. We
shall proceed by performing explicit computations.

To regularize the Feynman integrals of our theory will
shall use dimensional regularization. The dimensionally
regularized counterpart of any Feynman diagram is de-
fined as follows: First, 2i sinv�p2, p3� is expressed
as eiv�p2,p3� 2 e2iv�p2,p3�; second, the four-dimensional
momentum measure d4p��2p�4 is replaced with the
“D-dimensional” measure dDp��2p�D and any four-
dimensional algebraic expression with a D-dimensional
one defined according to the rules in Ref. [14]; third,
Gaussian integration over the D-dimensional loop mo-
menta is carried out, which leads to an integral over
the a-parameter space of Schwinger (see [15]); fourth,
D is promoted to a complex variable, and any formal
expression is defined to be an algebraic expression satis-
fying only the algebraic rules in Ref. [14], with the Weyl-
Moyal matrix being “intrinsically four dimensional.”

We have computed the one-loop UV divergent con-
tribution to all the divergent 1PI Green functions. The
results we have obtained thus read
G�AA�
m1m2

�p� � 2

√
1

�4p�2´

! √
13
3

2 a

! √
pm1pm2 2 p2gm1m2

!
, (4a)

G�AAA�
m1m2m3

�p1, p2, p3� � 2i

√
1

�4p�2´

! √
17
3

2 3a

!
sin�vmn�p2�m�p3�n�

3 ��p1 2 p3�m2gm1m3 1 �p2 2 p1�m3gm1m2 1 �p3 2 p2�m1gm2m3� , (4b)

G�AAAA�
m1m2m3m4

�p1, p2, p3, p4� �

√
1

�4p�2´

! √
4
3

2 2a

!

3 4�sin�vmn�p1�m�p2�n� sin�vmn�p3�m�p4�n� �gm1m3gm2m4 2 gm1m4gm2m3�

1 sin�vmn�p1�m�p4�n� sin�vmn�p3�m�p2�n� �gm2m4gm1m3 2 gm4m3gm1m2�

1 sin�vmn�p4�m�p2�n� sin�vmn�p3�m�p1�n� �gm4m3gm2m1 2 gm1m4gm2m3�� , (4c)
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G�cc��p� � 2

√
1

�4p�2´

! √
1
2

!
�3 2 a�g2p2 , (4d)

G�cAc�
m2

�p1, p2, p3� � 2i

√
1

�4p�2´

!
�ag2� �p1�m22 sin�vmn�p2�m �p3�n� , (4e)

G�Jc�
m �p� �

√
1

�4p�2´

! √
3 2 a

2

!
g2pm , (4f)

G�JAc�
m1m2

�p1, p2, p3� �

√
1

�4p�2´

!
�ag2�gm1m22 sin�vmn�p2�m�p3�n� , (4g)

G�Hcc��p1, p2, p3� � 2

√
1

�4p�2´

!
�ag2�ei�vmn�p2�m�p3�n � , (4h)
where D � 4 2 2´. Notice that the momentum struc-
ture of the previous contributions is the same as the
corresponding term in the BRS action in Eq. (2). So,
one would expect that these 1PI contributions can
be subtracted by MS multiplicative renormalization
of the fields and parameters in the BRS invariant
action. And, indeed, this is so, if we perform
the following infinite renormalizations: g0 �
m2´Zgg, a0 � Zaa, A0m � ZAAm, B0 � ZBB,
J0m � ZJJm, H0 � ZHH, c0 � Zcc, and c0 � Zcc.
Here the subscript 0 labels the bare quantities
and
Zg � 1 2
1

�4p�2´

22
3

g2, ZA � 1 2
1

�4p�2´

3 1 a

2
g2 ,

ZcZc � 1 1
1

�4p�2´

3 2 a

2
g2, ZcZAZc � 1 2

1
�4p�2´

ag2,

ZHZ2
c � 1 2

1
�4p�2´

ag2, ZB � Z21
A , Za � Z2

A, and ZJ � Zc . (5)
Notice that there is no renormalization of the matrix
vmn . That these Z’s render UV-finite the 1PI functions
whose pole contribution is in Eqs. (4) is a consequence
of BRS invariance. Indeed, in view of Eqs. (4), it is
not difficult to show that the singular contribution G�pole�

to the dimensionally regularized 1PI functional can be
recast into the form

G�pole� �
a

4g2

Z
dDx�Fmn � Fmn� �x� 1 BDX , (6)

where

X �
Z

dDx�a1�Jm 2 ≠mc� � Am 2 a2H � c� �x� ,

a �
1

�4p�2´

22
3

g2, a1 � 2
1

�4p�2´

3 1 a

2
g2,

a2 � 2
1

�4p�2´
ag2,

and BD is the linearized Slavnov-Taylor operator act-
ing upon the space of formal algebraic expressions con-
structed with D-dimensional monomials of the fields and
their derivatives. BD is defined as follows:

BD �
Z

dDx

"
dScl

dJm

d

dAm

1
dScl

dAm

d

dJm

1
dScl

dH
d

dc

1
dScl

dc
d

dH
1 B

d

dc

#
.

The conclusion that one draws from Eq. (6) is that
the UV divergent contributions displayed in Eqs. (4) are
BRS invariant. Notice that G�pole� is the sum of two
terms: the second is BD exact (recall that B

2
D � 0),

whereas the first, the Yang-Mills term, is BD closed.
This all goes hand-in-hand with the analysis of the UV
divergent contributions in standard SU(N) Yang-Mills
theory. And, indeed, as in standard four-dimensional
Yang-Mills theory, we have Zg � 1 2 a, ZA � 1 1

a1, ZcZc � 1 2 a1 1 a2, ZcZAZc � 1 1 a2, ZHZ2
c �

1 1 a2, ZB � Z21
A , Za � Z2

A, and ZJ � Zc. Equa-
tion (5) is thus recovered. Let us remark that the values
we have obtained for the Z’s agree with the corresponding
values of the Z’s of standard SU(N) Yang-Mills theory on
commutative �4 upon replacing in the latter the constant
C2�G� (the quadratic Casimir in the adjoint representa-
tion) with 2. Actually, the UV divergent contributions
in Eqs. (4) agree with those in the standard SU(N)
Yang-Mills theory, if the following substitutions are made
in the latter: fa1a2a3 ! 2 sinv�p2, p3� and C2�G� ! 2.
Recall that the structure constants are not renormalized
in standard SU(N) Yang-Mills theory; vmn , the matrix
defining the Weyl-Moyal product, is not renormalized
either.

We shall define the order h̄ MS renormalized 1PI func-
tional G

�1�,MS
ren as usual:

G�1�,MS
ren � lim

´!0
�G�1�

Dreg 2 G�pole�� ,
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where G
�1�
Dreg denotes the dimensionally regularized 1PI

functional at order h̄, and G�pole� is given in Eqs. (4). The
limit ´ ! 0 is taken after performing the subtraction of the
pole and replacing every D-dimensional algebraic object
with its four-dimensional counterpart [14]; this is why we
have denoted it by lim.

Since G
�1�
Dreg is BRS invariant, i.e., BDG

�1�
Dreg � 0, the MS

renormalized 1PI functional G
�1�,MS
ren is also BRS invariant:

BG
�1�,MS
ren � 0. The operator B is the counterpart of

BD at D � 4: the linearized Slavnov-Taylor operator in
noncommutative �4. We thus conclude that the Slavnov-
Taylor identity [Eq. (3)] holds for the renormalized theory
at order h̄. This statement is not completely rigorous since
there is no proof as yet that the quantum action principle
[14] holds for the dimensionally regularized amplitudes of
the theory at hand. However, in our computations we have
found no hint that this principle might not be valid here.

By using standard textbook techniques, one can work
out the renormalization group equation for GMS

ren :"
m

≠

≠m
1 b

≠

≠g
1 da

≠

≠a

2
X
f

gf

Z
d4x f�x�

d

df�x�

#
GMS

ren �f;g, v, a; m� � 0 .

The fields are denoted by f. It should be noticed that vmn

is a dimensionful parameter which does not run. The one-
loop beta function of the theory is easily computed to be

b�g2� � m
dg2

dm
� 2

1
8p2

22
3

g4.

Hence, the theory is asymptotically free. The other renor-
malization group coefficients read, at the one-loop level,

gA � 1
1

8p2

√
3 1 a

2

!
g4, gc � 1

1
8p2 ag4,

gJ � gc � gB � 2gA, da � 22gAa,

gH � 2gc .
We shall conclude with two remarks. First, the struc-
ture of the UV divergences, which is not a polynomial in
momentum space, is a polynomial in the fields and their
derivatives with respect to the Weyl product. One wonders
whether this generalizes to higher loops upon subtraction
of subdivergences and whether the theory of normal prod-
ucts (on which the method of algebraic renormalization
rests) remains valid upon replacing the ordinary product
with the Weyl product. Second, G�pole� verifies both the
gauge-fixing equation and the ghost equation (see Ref. [13]
for definitions) and, hence, so does the MS renormalized
1PI functional up to order h̄.
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[4] P. Kosiński, J. Lukierski, and P. Maślanka, hep-th/
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