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Optical Bloch Oscillations in Temperature Tuned Waveguide Arrays
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We report the observation of optical Bloch oscillations in waveguide arrays. The required linear
variation of the propagation constant across the thermo-optic polymer array was obtained by applying
a temperature gradient. Bloch oscillations manifesting themselves as transverse oscillations of the
propagating light beam can be attributed to the existence of localized states (Wannier-Stark states) with
equidistant eigenvalue spacing (Wannier-Stark ladder). The period and amplitude of the oscillations
can be controlled by varying the temperature gradient.

PACS numbers: 42.81.Qb, 42.25.Bs, 63.20.Pw
The question how electrons will behave in a crystal lat-
tice if a dc electric field is applied was raised by Bloch and
Zener early in this century [1] and was thereafter controver-
sially debated for a long time [2]. Taking advantage of the
recent progress in semiconductor growth technology, the
issue was settled by experimentally observing a Wannier-
Stark ladder (WSL) [3] and later Bloch oscillations (BO)
of electrons [4] in semiconductor superlattices. Inspired
by these achievements, similar phenomena were found in
other physical systems, as, e.g., for cold atoms in optical
lattices [5] and for light beams in periodic structures [6,7].
Moreover, it was pointed out that the basic phenomenon
can be described by a unified discrete model [8].

An array of evanescently coupled optical waveguides
is a prominent example of a discrete periodic dynami-
cal system. Intrinsic localization (discrete soliton forma-
tion) in arrays with different kinds of on-site nonlinearity
has been theoretically predicted [9,10] and recently ex-
perimentally confirmed in AlGaAs waveguide arrays [11].
Beyond the fundamental interest in optical waveguide ar-
rays (OWAs) as a convenient laboratory for the study of
dynamical effects in discrete systems they have a fair po-
tential in all-optical signal processing [12]. In addition to
nonlinear localization effects we recently predicted the ex-
istence of Wannier-Stark states (WSSs) as well as WSLs
and consequently the emergence of optical BOs in OWAs
with a linearly varying propagation constant across the
array [7]. In contrast to semiconductor superlattices with
temporal current oscillations on a femtosecond time scale
the direct measurement of BO amplitudes is feasible be-
cause BOs in OWAs manifest themselves as a station-
ary spatially periodic path of a discrete light beam on an
accessible spatial scale of some micrometers. In superlat-
tices they could be measured only indirectly via the field
shift of the WSL transitions caused by the small dipole
field of the oscillating electrons [13]. Furthermore, the
control of initial conditions is difficult in condensed mat-
ter experiments, e.g., the coherent excitation of free elec-
trons which is necessary to detect BOs. In contrast, the
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excitation of a discrete light beam in an OWA by a laser
source is a simple task, which even allows one to precisely
generate complex phase and amplitude distributions.

The aim of this Letter is to experimentally prove that
a thermo-optically tuned OWA exhibits supermodes that
correspond to WSSs with propagation constants forming
a WSL and that these features cause the existence of BOs,
the amplitudes and periods of which can be controlled by
the temperature gradient. We fabricated a homogeneous
OWA of 75 waveguides in an inorganic-organic copoly-
mer on thermally oxidized silicon and glass wafers with
copolymer cladding by uv lithography. Each waveguide
had a cross section of 3.5 3 3.5 mm2 and provided
low loss single mode waveguiding (,0.5 dB�cm) at
l � 633 nm. The uniform separation d of adjacent
guides was 8.5 mm to achieve efficient evanescent
coupling (see Fig. 1). The 4.5 cm long OWAs were

FIG. 1. Thermo-optic polymer OWA sandwiched between
two copper blocks at different temperature. (a) Schematics.
(b) OWA before applying the polymer cladding.
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fabricated on a 4 in. wafer and subsequently cut into
samples of width W ranging from 500 to 1000 mm
using a dicing saw. The uniform OWA was detuned by
taking advantage of the thermo-optic effect in the polymer
(thermo-optic coefficient nth � 21024 K21). By heating
and cooling the opposite sides of the array (Fig. 1) a
transverse linear temperature gradient was established,
leading to a linear variation of the refractive index as well
as the propagation constants of the waveguides across
the array. Simultaneously a homogenous evanescent
coupling constant C was preserved.

The analogy of the field evolution in a thermo-optically
detuned OWA to the motion of electrons in a crystal
with an external field applied is evident; i.e., the trans-
verse periodic structure of the OWA compares to the pe-
riodic potential of the crystal in one dimension and the
temporal variation of the lattice position of the electrons
corresponds to the longitudinally varying transverse po-
sition of a finite width light beam in the OWA. Simi-
lar to the tight-binding model for the description of
the electron motion we can describe the light propa-
gation by the coupled mode equations for the field
envelopes [7]
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where the wave number of the mode in the guide with
n � 0 has been separated. Here a is the wave number
spacing between two waveguides, introducing a linear
transverse potential, and an�z� is the z-dependent field
envelope in the nth waveguide. The same way as the
linear potential for the electrons, the potential in the OWA
can be continuously varied as a � 2pnthDTd��lW � by
changing the temperature difference DT between the
edges of the OWA. As previously stated, the emergence
of BOs is closely related to the existence of an equidistant
eigenstate spacing, the WSL. The eigenstates (WSSs) of
the OWA appear as localized supermodes [7]
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that exhibit an identical shape (except a shift of the center)
with eigenvalues bm � ma�m [ G� corresponding to
the temperature detuned propagation constant of the
waveguide m at which the supermode m is centered.
Thus, any input distribution a�0� excites a certain set
of WSSs (2). The beating of these states situated on
an equidistant eigenvalue ladder bm leads to a periodic
recurrence of a�0� after z � jzo � j2p�a� j [ G�.

Hence, the experimental verification of this periodic
recurrence can be considered as a proof of the WSL.
There are two distinct cases for a�0�, namely, the ini-
tial excitation of either a single or of a few wave-
guides. The first situation, e.g., a0�0� � 1, results in a
periodic breathing [14] with no change of the beam center
(first momentum)
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Equation (3) represents likewise the Green’s function of
the detuned OWA and is shown in Fig. 2a. If a few guides
are excited, as, e.g., for a Gaussian excitation an�0� �
exp�2�n�w�2� of width w � 4.0, a periodic motion of the
first momentum, which is the very BO, emerges as shown
in Fig. 2b. The calculated intensity profiles have been si-
multaneously obtained by solving the scalar wave equa-
tion in the inhomogenous medium and by solving Eq. (1),
where the good correspondence of the two methods is due
to the weak coupling of the waveguides.

The periodic evolution in both cases can be attributed to
the beating of eigenmodes with equidistant wave numbers.
But there is also an intuitive optical picture that explains
the behavior shown in Fig. 2 in terms of total internal
and Bragg reflection. In looking at the phase fronts in
Fig. 2b (dashed lines) one observes that the initially flat
phase of the Gaussian excitation develops a phase tilt
toward a growing wave number upon propagation. At
maximum elongation (half the oscillation period, z �
p�2
C 4.5) the phase tilt has risen to a phase difference of

p between adjacent waveguides. This is the boundary of
the Brillouin zone of the local dispersion relation of the
OWA (see, e.g., [15]). At this point the corresponding
transverse wave vector is such that the beam experiences
a Bragg reflection at the periodic array. Therefore the
phase front is reversed corresponding to a change to the
opposite boundary of the Brillouin zone. In the following
the linear index ramp slows down the transverse motion
of the beam toward lower indices by flattening the phase
front and, eventually, leading to total internal reflection at
the opposite turning point after a full oscillation and so on.

FIG. 2. Simulated field propagation in a linearly detuned
OWA (phase fronts: dashed lines). (a) Single waveguide
excitation—periodic breathing; (b) BO of a discrete Gaussian
beam (a � 0.4C).
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The periodic breathing of a single waveguide excitation
can be similarly explained [7].

In our experiment we first checked the OWA homo-
geneity without any temperature gradient. The coupling
constant C was estimated by exciting a single waveguide,
where a spreading across �25 waveguides in the output
(see Fig. 3a) gives C � 125 m21. The output field co-
incides with that theoretically calculated; therefore we as-
sume a good homogeneity. By continuously increasing
the transverse potential a, i.e., tuning DT , we detected the
output intensity profile at the array end face (z � 4.5 cm).
In Fig. 4 it is displayed together with the simulated out-
put. The measured narrowing of the output field up to the
recurrence to the single waveguide input at a � 140 m21

with a subsequent spreading and another recurrence at
a � 280 m21 can clearly be attributed to the existence
of a WSL. Here a change of the potential a has two con-
sequences. First, it results in a variation of the oscillation
period zo � 2p�a which means that for a � 70 m21

we detect the output after half an oscillation period zo�2,
at a � 140 m21 after a full period zo , etc. Second, the
elongation of the oscillation is changed as �4C�a, which
stems from a modification of the degree of localization
of the WSSs and therefore the number of waveguides
over which a localized excitation spreads in the course
of an oscillation. This decreases the maximum elonga-
tion for higher oscillations, e.g., at a � 210 m21 �3zo�2�,
compared to the elongation at a � 70 m21 �zo�2�. The
reasonable recurrence to the single waveguide excitation
after a full oscillation (Fig. 3b) proves the perfection of
the WSL. The measured periodic breathing is likewise a
visualization of the Green’s function of the detuned OWA.
This direct measurement is very peculiar, in that the exci-
tation of a single particle is impossible in, e.g., superlattice
experiments.

In contrast to the periodic breathing, the phenomenon
of BO is usually attributed to oscillations of the first mo-
mentum of a density distribution, due to the superim-

FIG. 3. Output for single waveguide excitation. (a) Uniform
OWA (DT � 0), (b) with refractive index gradient (C �
125 m21).
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posed oscillation of many excited particles. In OWAs
this can be achieved by the simultaneous excitation of
some waveguides. While increasing DT we measured the
oscillating transverse motion of the output beam center
displayed in Fig. 5a for a Gaussian excitation of width
w � 4 being compared to the simulations in Fig. 5b. The
output shows the same period as in Fig. 4. The decrease
of the maximum elongation from a � 70 to 210 m21 is
again due to the stronger localization of the WSSs for
higher a as �4C�a. Furthermore, for increasing a the
spreading of the excitation is reduced down to a mini-
mum at a � 140, 280, . . . m21 where after full BOs the
initial Gaussian distribution of the excitation is recovered.
The simulations revealed that in the experiment the initial
elongation was not exactly zero due to a slight phase tilt
of 0.095± in the initial excitation. The theoretically pre-
dicted translational invariance of the BO on the transverse
position in the waveguide array could also be confirmed
in the experimental investigations.

BOs, being a purely linear phenomenon of Wannier-
Stark state beating, have also been found in nonlinear
environments, as, e.g., in the Ablowitz-Ladik lattice [5].
But, by contrast, our theoretical investigations showed
that for self-phase modulation by an on-site Kerr nonlin-
earity [9] dephasing leads to a disintegration of the WSL.
Therefore BOs as well as the recurrence of the initial ex-
citation cease to exist.

In summary, we have shown the first experimental
evidence of optical Bloch oscillations in waveguide ar-
rays. The thermo-optical tuning of the linear potential
offered the possibility to continuously vary the Wannier-
Stark ladder spacing and the oscillation period. The
presented results prove that optical waveguide arrays are

FIG. 4. Output intensity vs a for single waveguide excitation;
(a) experiment; (b) simulations (C � 125 m21).
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FIG. 5. Output intensity for a Gaussian excitation vs a.
(a) Experiment; (b) simulations; (c) beam center (first momen-
tum) of the output intensity (C � 105 m21).

an interesting laboratory for quantum transport in lat-
tices. Photons have a much longer coherence length than
electrons. Thus in the used low loss waveguide arrays,
dephasing does not limit the observability of the presented
coherent effects. Further work should continue to inves-
tigate other aspects of quantum transport, e.g., Landau-
Zener tunneling by interpreting the not yet considered
transmission losses, and should take advantage of the spe-
cial experimental properties of OWAs, e.g., the ease of
generating special excitations, the possibility to observe
the otherwise fast evolution dynamics as a stationary field
distribution along the propagation direction by measuring
the scattered light from the top of the array, and the op-
portunity to coherently change the potential as well as the
lattice along the oscillation periods in the OWA in order
to observe resonant effects [16].
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