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New Type of Intensity Correlation in Random Media
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A monochromatic point source, embedded in a three-dimensional disordered medium, is considered.
The resulting intensity pattern exhibits a new type of long-range correlation. The range of these
correlations is infinite and their magnitude, normalized to the average intensity, is of order 1�k0�, where
k0 and � are the wave number and the mean free path, respectively.

PACS numbers: 42.25.Dd
A wave propagating in a random medium undergoes
multiple scattering and produces a complicated, irregular
intensity pattern. Such a pattern is described in statistical
terms and one of its important characteristics is the cor-
relation function �I��r1�I��r2��, where I��r� is the wave in-
tensity at point �r and the angular brackets designate the
ensemble average. This correlation function has been
studied in recent years, both theoretically and experimen-
tally, and various types of correlations have been iden-
tified [1]. There are large short-range correlations, due
to interference among the waves arriving, via all possible
scattering sequences, to a neighborhood of a given point;
this interference is responsible for the large spatial fluctua-
tions in intensity (speckles). There exist also weak long-
range correlations, due to diffusion which propagates the
locally large fluctuations to distant regions in space. The
purpose of this Letter is to identify and study a new type
of long-range correlation which, under appropriate cir-
cumstances, can dominate the “standard” long-range cor-
relations [1].

I consider a monochromatic point source embedded
in an infinite three-dimensional random medium. The
position of the source is �r0 and its frequency is v.
Assuming a scalar wave, one has the following equation
for the field (the Green’s function) at point �r:

�=2 1 k2
0�1 1 m��r�� 1 ih	Gv��r , �r0� � d��r 2 �r0� .

(1)

Here m��r� is the fractional fluctuation of the dielectric con-
stant, h is a positive infinitesimal, and k0 � v�c, where
c is the speed of propagation in the average medium. I as-
sume that m��r� obeys white-noise Gaussian statistics, i.e.,

�m��r�m��r 0�� � ud��r 2 �r 0� , (2)

where the constant u describes the strength of the disorder.
For weak disorder, the average field, the average inten-

sity, and various correlation functions can be computed by
the diagram technique [1]. The average field, �Gv��r , �r0��,
decays exponentially away from the source:
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where � � 4p�uk4
0 is the mean free path and k0� ¿ 1.
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The intensity at point �r is defined as Iv��r� �
jGv��r , �r0�j2 and its average value is given by the diagram
in Fig. 1. Intensity propagates from the source to a
distant observation point, such that j�r 2 �r0j ¿ �, by
a diffusion process. This is represented by a diffusion
ladder (the shaded box), T ��r1, �r2� � 3���3 j�r1 2 �r2j�.
The vertices, connecting the external points to the ladder,
are short-range objects which can be replaced by the
number Z

d3r1 �Gv��r0, �r1�� �G�
v��r0, �r1�� �

�

4p
, (4)

so that the average intensity at point �r is
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µ
�

4p
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3

16p2�j�r 2 �r0j
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Let us now consider the correlation function

�DIv��r�DIv��r 1 D�r��
�Iv��r�� �Iv��r 1 D�r��


 C�Dr� , (6)

where DIv��r� � Iv��r� 2 �Iv��r�� is the deviation from
the average value. The points �r and �r 1 D�r are assumed
to be far from the source, i.e., many mean free paths away.
Since only long-range correlations are considered here,
Dr ¿ � is assumed.

The leading contribution to the long-range correlations
is represented by the diagram in Fig. 2. The diagram con-
tains two pairs of Green’s functions. One pair propa-
gates, via a diffusion ladder, to point �r; the other, to point
�r 1 D�r . The pairs are connected by a dashed line, which
makes this diagram belong to the set of diagrams con-
tributing to C�Dr�. The physical interpretation of this di-
agram is straightforward: the wave, emanating from the
source, gets scattered at some point �r1, close to the source.
The secondary wave, emerging from �r1, propagates by

FIG. 1. The average intensity.
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FIG. 2. The correlation function (C0 term).

diffusion to two distant points, �r and �r 1 D�r . In this
way intensity correlation at the two points is established.

In order to evaluate the diagram in Fig. 2 one has to
compute the vertex, depicted separately in Fig. 3. The
vertex is a short-range object and, thus, can be replaced
by a point, located at �r0, from which the two diffusion
ladders emerge. The number V , assigned to the point is

V �
4p

�

Z
d3r1 d3r2 d3r3�Gv��r2 2 �r0��

3 �G�
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Integration over �r2 givesZ
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Integration over �r3 gives an identical contribution, so that

FIG. 3. The vertex.
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The integral is dominated by the region of small r, i.e.,
r � k21

0 ø �, so that the exponential can be replaced by
1, which leads to V � ��32pk0. The diagram in Fig. 2
is, thus, equal to

�
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�
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, (11)

where the factor � �
4p �2 accounts for the two vertices

connecting the diffusion ladders to the observation points
�r and �r 1 D�r . Recalling that �Iv��r�� � ���4p�2T ��r, �r0�,
and similarly for �Iv��r 1 D�r��, one can rewrite Eq. (11)
as �p�2k0�� �Iv��r�� �Iv��r 1 D�r��. Finally, the diagram
in Fig. 2 should be assigned a combinatorial factor 2,
since one could connect the two external Green’s function
by a dashed line, instead of connecting the two internal
ones as in Fig. 2. (Only lines with arrows in opposite
directions, corresponding to a pair of G, G� need to be
connected.) Thus, the contribution of the diagram in
Fig. 2 to the normalized correlation function [Eq. (6)] is

C0�Dr� �
p

k0�
, (12)

where the notation C0 is used to distinguish this term
from the other types of correlations, usually designated
[1] as C1, C2, and C3. For the geometry considered,
i.e., point source in an infinite three-dimensional medium,
the C0 term is much larger than the other types of long-
range correlations. Moreover, it does not decay in space
(infinite-range correlation).

It is worth noting that the C0 term resembles the C2
term [1,2], in the sense that both terms describe correla-
tion between two distant points, for intensity propagating
from a single source. However, C0 is not contained in
C2. Indeed, C2 is described by a four-ladder diagram and,
thus, cannot contain the diagram in Fig. 2. Moreover, in
computing and interpreting the C2 correlation it is essen-
tial that all four ladders are “at work” and can be treated
in the diffusion approximation [1,2]. For a point source
in three dimensions the C2 term is of order �k0��22, which
is much smaller than the C0 term in Eq. (12).

So far Dr ¿ � was assumed. The case Dr � 0, how-
ever, is also of interest. For this case the diagram in Fig. 2
gives a contribution to the second moment of intensity. For
the normalized intensity, Ĩ��r� 
 I��r���I��r��, this contribu-
tion is 2C0�0� � 2p�k0� [the extra factor 2, as compared
to Eq. (12), appears because for Dr � 0 one can pair also
Green’s functions emerging from point �r]. This contri-
bution represents a small correction to the Rayleigh value
�Ĩ2� � 2. The knowledge of the correction enables one to
compute deviations of the intensity distribution P�Ĩ� from
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the Rayleigh function P0�Ĩ� � exp�2Ĩ�. The calculation
is practically identical to the one performed by Mirlin
et al. [3], with one important difference: Ref. [3] consid-
ered quasi-one-dimensional geometry, where the correc-
tion was quite different from the present value 2p�k0�.
For the present, three-dimensional case the result is

P�Ĩ� � exp

µ
2Ĩ 1

p

2k0�
Ĩ2

∂
, Ĩ ø k0� . (13)

The asymptotic tail of the distribution, for Ĩ ¿ k0�, can
be obtained by the method of optimal fluctuation [4]. For
Ĩ � k0� the tail should smoothly match expression (13).
A detailed calculation of P�Ĩ� will be presented in a
separate publication.

One can easily extend the calculation to include corre-
lations at different frequencies. The object to consider is
the same as in Eq. (6), but with Iv1Dv��r 1 D�r� instead
of Iv��r 1 D�r�. The only difference in the calculation is
that, in Eq. (7) for V , one has to substitute v 1 Dv for
v in the last three Green’s functions. This leads to a re-
placement v ! v 1 Dv in one of the Green’s functions
and in one of the f factors in Eq. (10). For Dv ø v

this replacement leads only to an inessential correction to
the constant value in Eq. (12).

In conclusion:
(i) It has been shown that the intensity pattern, pro-

duced by a wave propagating in a random medium, can
exhibit a new type of correlation, designated as C0. This
correlation is of order 1�k0� and has infinite range in
space and frequency. Unlike the other types of long-range
correlations, C2 and C3, the C0 term is dominated by the
configuration of the disorder near the source.

(ii) Being sensitive to the short-distance properties of
the disorder, the C0 term cannot be universal; i.e., its mag-
nitude should depend on the specific type of the disorder.
For the white-noise Gaussian disorder, considered in this
note, C0 is determined by the parameter k0�. However,
for Gaussian disorder with a finite correlation length d, or
for discrete impurities of size d, the C0 term should de-
pend on d.

(iii) Let us emphasize that this paper considers a propa-
gating wave, in an open system. A somewhat differ-
ent problem pertains to the statistics of eigenmodes, and
eigenfrequencies, in a closed disordered system. Nonuni-
versal terms, of the same origin as these considered here,
exist also in that case, as has been recently discussed by
Mirlin [5].

(iv) The C0 term is also present in lower dimension-
alities. The quasi-one-dimensional geometry (a tube of
length L and cross section A) is of particular interest, since
it is often used in experiments [6]. The C2 and C3 terms
in this geometry are of order g21 and g22, respectively,
where g � k2

0A��L. Thus, for a point source inside the
tube, the C0 term will dominate as long as k0� # g, i.e.,
L , Ak0. This implies that our earlier calculation [3],
which left out the C0 term, is valid only for L . Ak0.

I acknowledge previous collaboration with A. Mirlin
and R. Pnini. It paved the way for the present work.
Useful conversations with A. Genack, D. Khmelnitskii,
and A. Lagendijk are gratefully acknowledged. The
work was supported by the U.S.-Israel Binational Science
Foundation and by the Fund for Promotion of Research at
the Technion.

[1] M. C. W. van Rossum and T. M. Nieuwenhuizen, Rev.
Mod. Phys. 71, 313 (1999).

[2] S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev.
Lett. 61, 834 (1988).

[3] A. D. Mirlin, R. Pnini, and B. Shapiro, Phys. Rev. E 57,
R6285 (1998).

[4] I. E. Smolyarenko and B. L. Altshuler, Phys. Rev. B 55,
10 451 (1997).

[5] A. D. Mirlin (to be published).
[6] M. Stoytchev and A. Z. Genack, Opt. Lett. 24, 262 (1999).
4735


