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Mixing Property of Triangular Billiards
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We present numerical evidence which strongly suggests that irrational triangular billiards (all angles
irrational with p) are mixing. Since these systems are known to have zero Kolmogorov-Sinai entropy,
they may play an important role in understanding the statistical relaxation process.
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After the pioneering paper of Fermi, Pasta, and Ulam [1]
and the mathematical works of the Kolmogorov school, the
modern ergodic theory can now account for the rich vari-
ety of different statistical behaviors of classical dynamical
systems. These properties range from complete integra-
bility to deterministic chaos. The relatively few rigorous
results so far available have provided a firm guide for a
large amount of analytical and numerical work which gave
a strong impulse to the field of nonlinear dynamics. Need-
less to say, several problems remain to be solved. For
example, it is known that mixing property guarantees cor-
relations decay and relaxation to statistical equilibrium. It
is, however, not known whether or not this property is suf-
ficient for a meaningful statistical description of the relax-
ation process or whether the strongest property of positive
Kolmogorov-Sinai (KS) entropy is required. Even much
less clear is the situation in quantum mechanics. For ex-
ample, to what extent the statistical distribution of energy
levels of a quantum conservative Hamiltonian system is
related to the different properties in the ergodic hierarchy
is an open question.

Examples of classically completely integrable or de-
terministic random systems have been widely studied in
the literature. However, to our knowledge, there are no
physical examples of systems which possess the mixing
property only (with zero KS entropy). In this respect, the
best candidates are billiards in 2D triangles but, in spite
of 30 years of investigations, no definite statement can be
made concerning their dynamical properties [2]. More-
over [3], “a prevailing opinion in the mathematical com-
munity is that polygonal billiards are never mixing, but
this has not been established.”

In this paper, we provide strong numerical evidence that
generic triangular billiards, with all angles irrational with
p , are mixing. This result can play an important role in
the understanding of nonequilibrium statistical mechanics
since it fills a gap in the ergodic hierarchy. Moreover,
since the local dynamical instability in these systems
is only linear, they have zero algorithmic complexity.
This means that, even though it may be very difficult,
their analytical solution is not impossible in principle
and this may prove to be very important for the future
development of nonlinear dynamics.
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We consider the motion of a point particle, with unit
velocity, inside a generic triangular billiard (with all
angles irrational with p , in general). Let us introduce
Cartesian coordinates �x, y�, and align one side of the
triangle along the x axis � y � 0�, starting at the origin
x � 0, and let us choose its length to be unity. We denote
the angle at the origin �0, 0� by a and the angle at �1, 0�
by b. Hence the other two sides of the triangle are given
by the equations y � �tana�x, and y � �tanb� �1 2 x�.

We would like to draw attention to the following fact:
the dynamics of a point particle in a triangular billiard
is equivalent to the motion of three particles on a ring
with different masses, m1, m2, and m3. Let the ring
have circumference 1. The motion of 3-particles 1D gas
with coordinates q1, q2, q3 (q1 # q2 # q3 # q1 1 1) is
governed by the Hamiltonian H �

1
2m1 �q2

1 1
1
2m2 �q2

2 1
1
2m3 �q2

3, with elastic collisions at q1 � q2, q2 � q3, and
q3 � q1 1 1. Introducing the notation

�r � �
p

m1q1,
p

m2q2,
p

m3q3�

and the orthogonal transformation

x �
1p

�m1 1 m2�M
�2

p
m1m3, 2

p
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with M � m1 1 m2 1 m3, the Hamiltonian writes: H �
1
2 � �x2 1 �y2 1 �z2� where, as can be checked by straight-
forward calculations, the motion in the �x, y� plane is
bounded by specular reflections from the sides of the tri-
angle with angles

tana �

s
m2M
m1m3

, tanb �

s
m1M
m3m2

, tang �

s
m3M
m2m1

.

(1)

The motion in the z coordinate trivially separates and cor-
responds to the center-of-mass motion in the 3-particles
1D gas.
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Notice, however, that triangular billiards with one
angle larger than p�2 cannot be related to the 3-particles
1D gas, since from the above formula it follows that
a, b, g , p�2. A particular case is given by the isosce-
les triangle which is dynamically equivalent to the right
triangle billiard, with, e.g., g � p�2. The latter corre-
sponds to m3 � `, i.e., to the 1D motion of two particles
with masses m1, m2 between hard walls [4].

The dynamics of triangular billiards can be divided into
three classes:

(A) All angles rational with p: The dynamics of such
triangles is not ergodic; in fact, it is pseudointegrable, i.e.,
it possesses 2D invariant surfaces of high genus in 4D
phase space (see [3] and Refs. therein).

(B) Only one angle rational with p: Such are generic
right triangles, for example. In recent numerical experi-
ments evidence has been given that right, irrational, trian-
gular billiards are ergodic and weakly mixing [5].

(C) All angles irrational with p: Surprisingly, to the
best of our knowledge, this generic class of triangles has
been somehow overlooked in previous numerical studies
and will be the main object of the present paper. It is
within this class that one may now hopefully look for
ergodic and mixing behavior.

From the rigorous point of view not much is known
beyond the fact that the set of ergodic triangles is dense in
a suitable topology. We recall that a dynamical system
Tt: �x�0� ! �x�t� with invariant measure m� �x� in phase
space M is mixing if, for any L2 pair of observables in
phase space, their time correlation function asymptotically
vanishes

lim
t!`

∑ Z
M

dmf�Tt �x�g� �x�

2
Z
M

dmf� �x�
Z
M

dmg� �x�
∏

� 0 .

The map Tt may represent a continuous flow (t real) or
a discrete map (t integer). In this paper we shall mainly
consider the dynamics given by a discrete Poincaré map
which corresponds to the collisions of the orbits with
the horizontal side y � 0. The reduced phase space—
surface of section (SOS)— is a rectangle, parametrized
by the coordinate 0 # x # 1 and by the corresponding
canonical momentum 21 # px � sinq # 1 (q � angle
of incidence), with the invariant measure dm � dxdpx .

As a first step we have performed an accurate check of
ergodicity. We have done this in two independent ways:

(i) By dividing the phase space (SOS) in a large number
N � N1 3 N1 of cells and then computing the number
n�t� of cells which are visited by a single orbit up
to discrete time t [6]. Then we computed the average
relative measure r�t� � �n�t��N� of visited phase space
up to time t where �?� denotes phase space average over
sufficiently many randomly chosen initial conditions. As
it is known, for the so-called random model of completely
uniform (ergodic) and random dynamics (obtained by
assuming that, at each discrete time step, a point has
4730
probability 1�N to fall in any of the N cells), one can
derive the simple scaling law [6]

r�t� � rRM�t� � 1 2 exp�2t�N� . (2)

Expression (2) (for arbitrary but sufficiently fine mesh N)
should be considered as a sufficient but not necessary
condition for ergodicity. In fact, the dynamics would
obey the law (2) only when the system does not possess
any nontrivial time scale. In Fig. 1 we show the results of
numerical computations for triangles of class (B) and (C).
We take, for example, a right triangle B with angles a �
�
p

5 2 1�p�4, b � p�2 2 a, g � p�2 and a generic
triangle C with angles a � �

p
2 2 1�p�2, b � �

p
5 2

1�p�4, g � p 2 a 2 b. It is seen that there is a drastic
difference between the two cases: the generic triangle C
excellently follows the law (2), whereas the right triangle
B, even though ergodic [5], strongly deviates and explores
the phase space extremely slowly, with a hierarchy of
long time scales related to a strong sticking of the orbit
in momentum �px� space.

(ii) By comparing the time averaged correlation
function for a single, but very long orbit, Ct

a�t� �
limT!`

1
T

PT
n�1 a�n�a�n 1 t� with the phase averaged

correlation function C
p
a �t� � �a�0�a�t�� which is com-

puted by Monte Carlo averaging over many short orbits
with different randomized initial conditions. In Fig. 2 we
plot the difference between the two curves for the generic
triangle C which turns out to be of the same order as the
statistical error.

FIG. 1. The relative measure r�t� of the visited phase space
as a function of discrete time t. The full and dashed curves
refer to different discretizations of phase space, namely to
N � 106 and N � 104 cells, respectively. The two upper
curves refer to the generic triangle C, whereas the two lower
curves refer to the golden right triangle B (see text for details).
The random model, Eq. (2), is given by the dash-dotted curve
which is almost indistinguishable from the numerical curve
for the triangle C at N � 106. In order to better display
the excellent agreement with Eq. (2), we plot in the inset the
function 1 2 r�t� for the generic triangle C in the semilog
scale. At N � 106, and N � 104, averages over 200, and
4000 orbits with randomized initial conditions have been used,
respectively.
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FIG. 2. The velocity autocorrelation function C
p
px �t� in log-

log scale for the generic triangle C (full curve), which is
obtained as the average over 1.2 3 106 different orbits of
length 32 768 (full curve). The dashed line gives the slope
21.00. The dash-dotted curve gives the estimated statistical
error of the correlation function, while the scattered dots around
it mark the difference between the phase averaged and the time
averaged correlation jC

p
px �t� 2 Ct

px
�t�j where the time average

is computed from a single orbit of length T � 32 768 3 1.2 3
106 with initial condition x0 � 0.23 456, px0 � 0.34 567. The
statistical error is estimated as the standard deviation of a
sequence of M � 1000 partial averages of length T�M each.

The above numerical results are surprisingly much
clearer than expected; they demonstrate ergodic behavior
and they make it reasonable to expect mixing behavior
also. We now turn our attention to the latter question.

We have performed extensive numerical computa-
tions of autocorrelation functions of different observ-
ables, namely, momentum (horizontal component of
velocity) y � px , symmetrized position x0 � 2x 2 1,
and also characteristic functions of sets in phase space.
In all cases, we have found clear numerical evidence
of power-law decay of correlation functions over about
4 orders of magnitude. For a given triangle, correlation
functions of different observables decay with the same
empirical exponent which is typically very close to
21. In Fig. 2 we show the velocity correlation function
of the triangle C, which decays with exponent with
the fitted value 2s � 20.90 6 0.02. However, since
the triangle C is not too far from the right triangle,
we have chosen another, similar generic triangle D
with the irrational angles a � �

p
2 2 1�p�2, b � 1,

g � p 2 a 2 b and show in Fig. 3 its velocity and
position correlation function which decay with empirical
exponent 2s � 20.94 6 0.04. We have performed
extensive numerical calculations of correlation functions
for many different generic triangles, and the exponent of
decay has always been very close to 21. There are even
cases where the fitted decay exponent seems to be slightly
below 21 (s . 1); however, in such cases, correlation
FIG. 3. The absolute values of velocity (a) and position
(b) correlation function, jCt

p�t�j and jCt
x0 �t�j, for an orbit of

length 1011 in the generic triangular billiard D. Initial condition
x0, px0 and line coding are the same as in Fig. 2.

functions appear much more noisy, and it is difficult to
make precise statements.

Finally, we have performed a different and powerful
statistical test, namely we have computed the Poincaré re-
currences or the return time statistics, i.e., the probabil-
ity P�t� for an orbit not to stay outside a given subset
A , M for a time longer than t. It has been conjec-
tured [7,8] (see also [9] for accurate definition and fur-
ther references) that the integrated probability Pi�t� �P`

t0�t P�t0� should be intimately connected to the cor-
relation decay. More precisely, if the correlation func-
tion decays as a power law with exponent 2s, then the
integrated return probability should decay with a simi-
lar exponent P�t� � t2m21, Pi�t� � t2m, where m � s.
In Fig. 4 we show the recurrence probability P�t� and
the integrated probability Pi�t� computed with respect to
half space A � ��x, px�; px . 0� for the same data as in
Fig. 3 (triangular billiard D). We have found that numeri-
cal results are perfectly consistent with m � s � 1, i.e.,
with 1�t2 decay of return probability P�t�.

To summarize, the numerical obtained value of expo-
nent s is close to 21, but in some cases is slightly less
and in other cases slightly larger. We attribute this fact
to long transient times which are caused by the intricate
4731
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FIG. 4. The return probability P�t� (full curve), and the
integrated return probability Pi�t� (dashed curve), for the same
orbit (triangle D) as in Fig. 3. The dash-dotted lines have
slopes 22 and 21, respectively.

interplay of arithmetic properties of angles a, b, g and
by the presence of periodic orbits. In this connection, we
would like to mention that we have numerically investi-
gated the existence of periodic orbits, and we have found
that their number increases very slowly with their period.
The number of nonequivalent periodic orbits with lengths
up to l (collisions with the boundary) typically increases
slower than l.

A qualitative argument which leads to the 1�t decay
of correlations reads as follows: let us consider a fixed,
sufficiently small, region A in phase space around a
periodic orbit and study the l iterates of the Poincaré
map, where l is the period of the orbit. Because of
the linear (in)stability, the orbit which starts in a small
square ae of side e centered on the periodic orbit and
contained in A, will remain in A for a time t $ 1�e.
It follows that the probability P�1�e� for an orbit to stay
in the region A for a time t $ 1�e is proportional to
the probability of the orbit to visit the square ae . Now,
the linear instability implies that an orbit which enters the
square ae will remain inside ae for a constant time which
does not depend on e as e ! 0. As a consequence, from
the Liouville theorem it follows that the probability for
an orbit to visit the square ae will be proportional to its
area e2. This is the probability P�1�e� to remain in the
region A for a time t $ 1�e. This leads to the relation
P�t� ~ 1�t2 as confirmed by numerical results.

Since the question discussed in this paper is a very deli-
cate one, we have put particular attention to the accu-
racy of our numerical computations. Among the several
different tests, we have developed two independent com-
puter codes, one based on the billiards dynamics in a 2D
plane, and the other based on the three particles 1D gas
dynamics: the results agree. Moreover, since the instabil-
ity here is only linear in time, and the machine precision
is �10216, the numerical errors are always below the sta-
tistical errors.
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The central question is to what extent the results pre-
sented here can be considered as a definite or convincing
evidence for the mixing property of generic triangular bil-
liards. The correlation decay of some particular class of
functions is certainly compatible with a weaker property
than mixing. However, in this paper we have compared
the correlations decay of different variables (velocity, po-
sition, characteristic functions of phase space sets, etc).
We have also considered the dynamics given by the dis-
crete Poincaré map relative to different sides of the same
triangle: all these correlations exhibit a power law decay
with exponent very close to 21, and make very plausible
the conjecture that correlation functions in generic trian-
gles decay as ~1�t. Of particular significance is the be-
havior of the return probability P�t� which decays with
the expected power law ~1�t2. All the above results (in-
cluding those described in Fig. 1) lead to the conclusion
that, outside any reasonable doubt, generic irrational trian-
gles are mixing. The particular case of isosceles or right
triangles is much less clear. The behavior of correlations
in such a case is noisy and the exponent of the decay is
too small to allow for any definite conclusion.

The fact that generic triangles have zero Kolmogorov-
Sinai entropy and yet they have a very nice mixing
behavior without any time scale, may prove to be very
useful for understanding the dynamical basis of the relax-
ation process to the statistical equilibrium. Moreover, the
analysis of their quantum behavior will contribute to the
current efforts for the construction of a statistical theory
of quantum dynamical systems.

The authors gratefully acknowledge the hospitality
of Centre Internacional de Ciencias, a.c., Cuernavaca,
Mexico, where the major part of this work has been
performed, and fruitful discussions with F. Leyvraz. T. P.
acknowledges the financial support by the ministry of
science and technology of Slovenia.

[1] E. Fermi, J. Pasta, and S. Ulam, Los Alamos Report
No. LA-1940, 1955.

[2] E. Gutkin and A. Katok, in Lectures Notes in Mathematics
(Springer, Berlin, 1989), Vol. 1345, pp. 163–176.

[3] E. Gutkin, J. Stat. Phys. 83, 7 (1996).
[4] P. Kornfeld, S. V. Fomin, and Y. G. Sinai, Ergodic Theory

(Springer, Berlin, 1982).
[5] R. Artuso, G. Casati, and I. Guarneri, Phys. Rev. E 55,

6384 (1997).
[6] M. Robnik, J. Dobnikar, A. Rapisarda, T. Prosen, and M.

Petkovsek, J. Phys. A 30, L803 (1997).
[7] B. V. Chirikov and D. L. Shepelyansky, INP 81-69, 1981

(unpublished) (in Russian) [English translation: Princeton
Report No. PPPL-TRANS-133, 1981].

[8] C. F. F. Karney, Physica (Amsterdam) 8D, 360 (1983).
[9] R. Artuso, Physica (Amsterdam) 131D, 68 (1999).


