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First-Order Chiral Phase Transition May Naturally Lead to a “Quenched”
Initial Condition and Strong Soft-Pion Fields
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We propose a novel mechanism for disoriented chiral condensate (DCC) formation in a first-order
chiral phase transition. In this case the effective potential for the chiral order parameter has a local
minimum at F � 0 in which the chiral field can be “trapped.” If the expansion is fast, a bubble of dis-
oriented chiral field can emerge and decouple from the rest of the fireball. The bubble may overshoot
the mixed phase and supercool until the barrier disappears, when the potential resembles that at T � 0.
This situation corresponds to the initial condition realized in a “quench.” Thus, the subsequent align-
ment in the vacuum direction leads to strong amplification of low-momentum modes of the pion field.
We propose that these DCCs could accompany the previously suggested baryon rapidity fluctuations.

PACS numbers: 25.75.–q, 11.30.Qc, 11.30.Rd, 24.85.+p
Relativistic heavy-ion collisions might offer the inter-
esting opportunity to study chiral symmetry restoration at
nonzero temperature and density, which could possibly
lead to the formation of domains of disoriented chiral con-
densate (DCC) [1–5]. The strongest amplification of the
pion field is obtained for the so-called “quenched” initial
condition [3]. It is assumed that the heat bath is removed
instantaneously after restoration of chiral symmetry.

However, dynamical simulations [4,5] show that the
“quench” does not emerge naturally in a heavy-ion col-
lision, if the chiral phase transition is second order or a
smooth crossover. In this Letter, we instead propose a new
approach to obtain the quenched initial conditions naturally
in the presence of a first-order phase transition.

It has been argued [6] that the phase transition for two
massless quarks at baryon-chemical potential m � 0 is
second order which then becomes a smooth crossover for
small quark masses. On the other hand, a first-order phase
transition is predicted for small temperatures and large
m. If, indeed, there is a smooth crossover for m � 0
and nonzero T , and a first-order transition for small T
and nonzero m, then the first-order phase transition line in
the �m, T � plane must end in a second-order critical point.
This point is predicted to be at T � 100 MeV and m �
600 MeV. However, some lattice QCD results indicate
a first-order transition even at vanishing baryon-chemical
potential [7].

Such temperatures and baryon-chemical potentials can
be reached in the central region of heavy-ion collisions
in the forthcoming Pb�40A GeV� 1 Pb experiments at the
CERN-SPS [8], and in the fragmentation regions of more
energetic collisions at the CERN-SPS, BNL-RHIC, and
CERN-LHC (

p
s � 20A, 200A, 5000A GeV) [9]. Fur-

thermore, fluctuations in individual events can also pro-
vide rapidity bins with significantly higher m and lower T
than on average [10–13]. In any case, the dynamical sce-
nario for DCC formation described in this Letter applies
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to the case of a first-order chiral phase transition, and is
qualitatively independent of the value of m. Our calcula-
tion described below has been performed at m � 0, and
the parameters of the Lagrangian have been chosen such
as to yield a first-order phase transition. It can be viewed
as a representative example to illustrate the idea; the basic
mechanism works equally well also at nonzero m.

In case of a first-order transition, the thermodynamical
potential as a function of the order parameter F exhibits
a local minimum at F � 0 both in the chirally restored
phase as well as in the mixed phase [11,12,14]. In high-
energy heavy-ion collisions, the expansion rate of the
locally comoving three-volume element can become large
[15]. This opens the possibility that the system can break
up into smaller droplets [12,16], which might not be able
to follow an adiabatic expansion. Instead, a bubble can
“overshoot” the phase boundary [11] into the low-density
broken phase. The chiral field in the bubble is coherent if
the bubble radius is on the order of the coherence length or
smaller. Close to a first-order phase boundary, the chiral
field is light and this coherence length is expected to be
large.

Suppose the bubble is created in the restored phase,
close to the first-order phase boundary. Following [11],
we suppose that the chiral field within the bubble is
trapped in the F � 0 local minimum of the potential
(chiral symmetry is still restored but the field oscillates
in the false direction), while in previous work [12,17] it
was assumed that chiral symmetry breaking had already
occurred in the bubble.

The preceding expansion will lead to a velocity profile
in the bubble. In other words, the bubble will exhibit a
Hubble-like expansion with a very large expansion rate
[12,15], and supercool. During the period of supercooling
the chiral field oscillates coherently within the whole
bubble, while its energy dissipates partly due to friction
(coupling to the heat bath [18]). The local minimum in
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the effective potential persists until the droplet reaches the
spinodal line where the potential is close to that at T � 0
(one single minimum). The moment where the coherent
field “leaps” over the barrier depends on the barrier height
and the fluctuation. In a quasistatic situation, the field
would tunnel to the global minimum. However, in a high-
energy heavy-ion collision, the local expansion rate is so
large (roughly 1020 times larger than that of the Universe
at spontaneous chiral symmetry breaking [15]) that it is
reasonable to assume that tunneling has no time to occur.

A second possibility for the chiral field to be kicked
over the barrier to the global minimum at F fi 0 is via
a thermal fluctuation. Estimates within homogeneous nu-
cleation theory [19] show that the time scale for nucleation
of critically sized bubbles with F fi 0 is about the same as
that needed to reach the spinodal region (�2 fm�c in our
calculation below). Finite-size effects delay bubble nucle-
ation even further [20]: If our entire decoupled bubble has
the size of the critically sized bubble in homogeneous nu-
cleation theory, it cannot convert to the broken phase via
homogeneous nucleation. Instead, it must supercool until
it reaches the spinodal instability; cf. also [11]. Thus,
the most favorable scenario for amplification of the low-
momentum modes of the pion field, i.e., the quenched ini-
tial condition, is automatically realized in a natural way if
the chiral phase transition is first order.

Similar to previous studies of DCC formation, our
scenario also requires a rapid evolution out of equilibrium.
However, the required 10%–20% supercooling appears
much more moderate than the instantaneous removal of the
heat bath at T � TC , as is necessary to obtain the quenched
initial conditions in a smooth crossover [3].

After the true vacuum is reached, the coherent chiral
field will eventually decay into pions due to residual in-
teractions [2,21]. If, at this stage, the heat bath is still very
hot and dense, scattering of the DCC pions with particles
from the heat bath will randomize the isospin orientation
and spread the momentum distribution [22]. However, in
case of a first-order transition with supercooling, the DCC
decays at a much lower temperature and density of the
heat bath. Therefore, it might be more feasible to detect
the DCC pions. These pions will be blueshifted, though,
according to the velocity of the bubble from which they
emerged.

Above, we discussed the mechanism for DCC forma-
tion within a decoupled bubble. In principle, however, the
same idea can be applied to the entire fireball, thus assum-
ing that it supercools and reaches the spinodal instability
as a whole. Nevertheless, we have chosen to describe how
our picture works in a smaller droplet.

To illustrate the above idea, we applied the linear s

model coupled to a heat bath [5,16]. The Lagrangian of the
linear sigma model with quark degrees of freedom reads

L � q �igm≠m 2 g�s 1 ig5 �t ? �p��q

1
1
2 �≠ms≠ms 1 ≠m �p≠m �p� 2 U�s, �p� , (1)
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where the zero temperature potential is

U�s, �p� �
l2

4
�s2 1 �p2 2 y2�2 2 Hs . (2)

Here, q is the light quark field q � �u, d�. The scalar
field s and the pion field �p � �p1, p2, p3� together form
a chiral field F � �s, �p�. This Lagrangian is invari-
ant under chiral SUL�2� ≠ SUR�2� transformations if the
explicit symmetry breaking term Hs is zero. The pa-
rameters of the Lagrangian are usually chosen such that
the chiral symmetry is spontaneously broken in the vac-
uum and the expectation values of the meson fields are
	s
 � fp and 	 �p
 � 0, where fp � 93 MeV is the pion
decay constant. The constant H is fixed by the partially
conserved axial current relation which gives H � fpm2

p ,
where mp � 138 MeV is the pion mass. Then one finds
y2 � f2

p 2 m2
p�l2. The sigma mass, m2

s � 2l2f2
p 1

m2
p , which we set to 600 MeV, yields l2 � 20. The cou-

pling to the heat bath, g � 5.5, is chosen such as to obtain
the potential shown in Fig. 1. It corresponds to a first-
order chiral phase transition. Note that this large value for
g results in a constituent quark mass at T � 0 of mq �
gfp � 512 MeV. Thus, the nucleon mass is too large.
However, this is not relevant for our present considera-
tions. A stronger coupling leads to a stronger first-order
phase transition with a more pronounced barrier and even
larger constituent quark mass; on the other hand, g � 3.3
fits the nucleon mass in the vacuum but results in a
smooth crossover [5].

The Euler-Lagrange equations of motion for the fields,

≠m≠ms 1 l2�s2 1 �p2 2 y2�s 2 H � 2grs ,

≠m≠m �p 1 l2�s2 1 �p2 2 y2� �p � 2g �rps ,
(3)

are solved self-consistently through the effective quark and
antiquark mass, mq � g

p
s2 1 �p2, with the continuity

equation for the energy-momentum tensor of the heat bath,
which is constituted by the quarks:

≠mTmn 1 r≠nmq � 0 , (4)

where rs and �rps are the scalar and the pseudoscalar
densities, respectively, and r �

p
r2

s 1 �r2
ps. To solve

Eqs. (3), we employ a second-order leapfrog algorithm,
while Eqs. (4) are solved with the relativistic Harten-Lax-
Van Leer-Einfeldt algorithm [23], assuming that Tmn is
that of an ideal fluid in local thermodynamical equilibrium.
For more details please refer to [5].

Let us consider the evolution starting close to the mini-
mum of the potential shown to the left in Fig. 1. The
evolution of the fields is shown in Fig. 2. The chiral field is
“trapped” for t � 2 fm�c in the local minimum until the
temperature drops to the value corresponding to the po-
tential to the right �T � 100 MeV�. At this point, the
bubble is supercooled by about 15% and the barrier to the
global minimum has almost disappeared. Here, the field
starts to “accelerate” and rolls towards the true vacuum.
For this scenario, we find that the pion field is amplified
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FIG. 1. Finite temperature effective potential (i.e., the grand canonical potential) within the linear s model at T � 130 MeV
(left) and T � 100 MeV (right). The black dot depicts the average chiral field at the corresponding time.
by more than a factor of 100, corresponding to about 18
p0’s and 3 s’s for an initial radius of 4 fm; see Fig. 3.
For the simple quench scenario, where the fields evolve in
the zero temperature potential U and without coupling to
any heat bath, we get similar results: 21 p0’s and 4 s’s.
We computed these numbers as described in [5,24].

In summary, we discussed a novel mechanism for DCC
formation in a first-order chiral phase transition. We study
a bubble of disoriented chiral field that decouples from the
rest of the system before reaching the phase boundary.
The bubble supercools, and as the effective potential
approaches the T � 0 form the local minimum at F � 0
disappears. This leads to the quenched initial condition.
The subsequent alignment in the vacuum direction leads
FIG. 2. The p0 and s field strengths within the forward light cone for g � 5.5 and initial condition F � �0.1, 0.07, 0, 0�fp ,
≠F�≠t � 0. The initial expansion scalar was chosen as ≠u � 1��2 fm�c�.
to very strong amplification of low-momentum modes of
the pion field.

If the chiral phase transition is first order, as is particu-
larly likely the case for finite baryon density [6], and if
the system breaks up into smaller droplets or bubbles, ra-
pidity fluctuations (e.g., of baryon number) can occur, as
proposed in [11–13,16]. If a DCC is formed, in coinci-
dence “pion spikes” of given bubble isospin could appear
in the same pT and rapidity range.
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FIG. 3. Number of s and p0 mesons produced from the
decay of the classical chiral field. The solid lines correspond to
the self-consistent calculation with first-order phase transition
(initial conditions as in Fig. 2); dotted lines are for the
quenched initial conditions F � �0.45, 0.07, 0, 0�fp , ≠F�≠t �
0, V � U (this corresponds to roughly the same potential
energy at the time when “rolldown” begins).
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