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Zero-Variance Principle for Monte Carlo Algorithms
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We present a general approach to greatly increase at little cost the efficiency of Monte
algorithms. To each observable to be computed we associate a renormalized observable (im
estimator) having the same average but a different variance. By writing down the zero-var
condition a fundamental equation determining the optimal choice for the renormalized observa
derived (zero-variance principle for each observable separately). We show, with several exa
including classical and quantum Monte Carlo calculations, that the method can be very powerful.
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Since the pioneering work of Metropoliset al. [1]
Monte Carlo methods have been widely used in ma
areas of natural sciences. At the root of Monte Car
methods lies a very efficient stochastic method for calc
lating many-dimensional integrals (or sums) written und
the general form

�O� �

R
S dxp�x�O�x�R

S dxp�x�
, (1)

where O�x� is some arbitrary observable (real-value
function) defined on the configuration spaceS (continuous
or discrete) andp�x� some probability distribution. In
Monte Carlo methods the integrals are evaluated usin
large but finite set of configurations�x�i��i�1,N distributed
according top and generated by a step-by-step stochas
procedure (Markov chain),

�O� �
1
N

NX
i�1

O�x�i�	 1 dO , (2)

wheredO is the statistical error associated with the finit
statistics. For a large enough numberN of Monte Carlo
steps, standard statistical arguments lead to the follow
expression of the error:

dO � K
s�O�
p
N

, (3)

where K is some positive constant proportional to th
amount of correlation between configurations, ands�O�
is a measure of the fluctuations of the observable,

s�O� �
p

�O2� 2 �O�2 . (4)
In this Letter, it is shown that by introducing a suitabl

renormalized observablẽO�x� the statistical error can be
drastically reduced and even suppressed, thus definin
zero-variance principle for the Monte Carlo calculatio
of observables. To realize this, a trial operatorH and a
trial functionc�x� are introduced (a trial matrix and a tria
vector in the discrete case). The operatorH is supposed to
be Hermitian (in all practical applications, real symmetric
and is chosen such thatZ

dy H�x, y�
q

p� y� � 0 . (5)

On the other hand, the trial functionc�x� is a rather arbi-
trary function which is simply supposed to be integrabl
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Now, the renormalized observablẽO�x� associated with
the observableO�x� is defined as follows:

Õ�x� � O�x� 1

R
dyH�x, y�c� y�p

p�x�
. (6)

As a direct consequence of Eq. (1) and of the ve
definition of the Hermitian operatorH, Eq. (5), we have
the important property

�Õ� � �O� . (7)

In other words, both quantitiesO�x� and Õ�x� can be
used as estimators of the desired average. However,
statistical errors, which are controlled bys�O� ands�Õ�,
can be very different. The optimal choice for�H, c� is
obtained by imposing the renormalized function to b
constant and equal to the exact average. This leads
the following fundamental equation:Z

dy H�x, y�c� y� � 2�O�x� 2 �O�	
q

p�x�

, s�Õ� � 0 . (8)

At this point it should be emphasized that the idea
using renormalized estimators for reducing the variance
not new. A number of applications have been perform
using various “improved” estimators having a lower var
ance (see, e.g., [2,3]). The basic idea is to construct n
estimators by integrating out some intermediate degre
of freedom and, therefore, removing the correspondi
source of fluctuations. However, to the best of our know
edge, no general and systematic approach based on a z
variance principle and valid for any type of Monte Carl
methods has been proposed so far.

In this work the following strategy is proposed. Firs
a Hermitian operatorH verifying (5) is chosen. Second,
some approximate solution of Eq. (8) is searched for. T
various parameters enteringc are then optimized by mini-
mizing the fluctuations of the renormalized observab
over a finite set of points distributed according top

and obtained from a short Monte Carlo calculatio
Finally, a standard much longer Monte Carlo simulatio
is performed using̃O�x� instead ofO�x� as estimator.
© 1999 The American Physical Society
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Choice of H.—Clearly, a large variety of choices are
possible for the trial operator H. For Monte Carlo algo-
rithms satisfying the detailed balance condition (in prac-
tice, the vast majority of MC schemes) a very natural
choice is at our disposal. Denoting p�x ! y� the tran-
sition probability distribution defining the Monte Carlo
dynamics, the detailed balance condition is written as
p�x�p�x ! y� � p� y�p� y ! x� for all pairs �x, y� in
configuration space. A most natural operator to con-
sider is

H�x, y� �

s
p�x�
p� y�

�p�x ! y� 2 d�x 2 y�	 . (9)

From the detailed balance condition it follows that the op-
erator H is symmetric, H�x, y� � H�y, x�. The fundamen-
tal property (5) is verified since the sum-over-final states
for a transition probability is equal to one. For continu-
ous systems Schrödinger-type Hamiltonians can also be
considered

H � 2
1
2

dX
i�1

≠2

≠x2
i

1 V �x� , (10)

where V �x� is some local potential constructed to fulfill
condition (5):

V �x� �
1

2
p

p�x�

dX
i�1

≠2
p

p�x�
≠x2

i
, (11)

where d is the number of degrees of freedom. Note that
in Eq. (10), H is written using the standard quantum-
mechanical notation for a local Hamiltonian in the x-space
realization.

Choice of c .—Once the operator H has been chosen,
the optimal choice for c is the exact solution of the funda-
mental equation. Of course, in practice only approximate
solutions are available. What particular form to choose
for c is very dependent on the problem at hand, on the
type of observables considered, and also on the form cho-
sen for the trial operator H. However, a most important
point to be stressed is that the global normalization fac-
tor associated with c is a pertinent parameter of the trial
function. Minimizing the fluctuations of the renormalized
function s�Õ� with respect to it, we get

s�Õ�2 � s�O�2 2

DO�x�
R

dy H�x,y�c� y�
p

p�x�

E2

D≥R
dy H�x,y�c� y�
p

p�x�

¥2E . (12)

The correction to s�O�2 being negative, we obtain the
important result that, whatever the choice made for
the trial function (even the most unphysical one), the
optimization of the multiplicative factor always leads to
a reduction of the statistical error.

Our first application concerns the Monte Carlo calcu-
lation of the internal energy of the standard 2D Ising
model at various temperatures and linear sizes L �
5, 10, 20, and 25. The observable considered is the en-
ergy function given by E�S� � 2
P

�i,j� SiSj (coupling
constant J � 1, sum limited to nearest neighbors, and
periodic boundary conditions). The probability distribu-
tion is p�S� � exp�2bE�S�	 with b � 1
kBT . Here,
S � �S1, . . . , SN � with Si � 61, and N � L 3 L is the
total number of spins. Simulations have been performed
using a Swendsen-Wang–type algorithm [4] (nonlocal up-
dates of clusters of spins). To construct the trial operator
H we have chosen to use the transition probability dis-
tribution of Monte Carlo algorithms with local updates
(“heat-bath” -type algorithms). The probability of flipping
the spin Si � 61 at site i is given by

p�Si ! eSi� �
ebeSiS̃i

ebSiS̃i 1 e2bSi S̃i
, (13)

where e � 1 (no flip) or 21 (flip), and S̃i is the sum
of neighboring spin values. With this choice and using
Eq. (9) the fundamental equation (8) can be rewritten
under the form

NX
i�1

p�S ! TiS� �Q�S� 2 Q�TiS�	 � E�S� 2 �E� ,

c�S� � Q�S�
q

p�S� ,
(14)

where the application Ti (i � 1, . . . ,N) describes a flip
at site i, and is defined by Ti�S1, . . . , Si , . . . , SN � �
�S1, . . . , 2Si , . . . , SN �. At b � 0 (T � `) the transition
probability distribution becomes constant and the exact
solution is easily found to be Q�S� � E�S�
2. For finite
temperatures some approximate solution has to be found.
Here we introduce for Q�S� a polynomial expansion up to
the fourth order in the variables X �

PN
i�1 Si (magneti-

zation) and Y �
PN

i�1 g�SiS̃i� [“generalized energy,” the
usual energy being recovered for g�x� � x]. Precisely,
we have chosen the form Q�S� � e2Z

P
n1m#4 cnmX

nYm

where Z �
PN

i�1 h�SiS̃i�. The set of variational parame-
ters of c consists of all coefficients cnm of the polynomial
plus the ten possible values of functions g and h. All
coefficients have been optimized by minimizing the fluc-
tuations of the renormalized energy s�Ẽ� defined by (4)
and calculated from 2000 to 5000 different spin configu-
rations S�i� drawn according to p . Finally, the last step
consists in performing a long Monte Carlo simulation to
compute accurately the various quantities. The number
of clusters built varies from 106 (for the larger size) to
2 3 108 (for the smaller size). Results are presented in
Table I. Three different temperatures have been consid-
ered. T � 3 corresponds to the low-temperature regime,
T � Tc � 4
 ln�

p
2 1 1� is the critical temperature for

the infinite lattice, and T � 8 is in the high-temperature
regime of the model. At T � 3, our representation is
extremely good whatever the size of the lattice consid-
ered. The variance associated with the renormalized en-
ergy is drastically reduced with respect to the bare value
and the gain in computational effort can be as great as
�360. Here, the gain in computational effort is defined
as the ratio of the squared statistical errors �dẼ
dE�2. In
4683



VOLUME 83, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 6 DECEMBER 1999
TABLE I. Internal energies for the 2D Ising model at different temperatures. N is the number of sites. Statistical uncertainties
on the last digit are indicated in parentheses.

Size 5 3 5 10 3 10 20 3 20 25 3 25 ` 3 `

T � 3

s�E�2
N 1.789(1) 1.777(2) 1.78(1) 1.79(1)
s�Ẽ�2
N 0.012 5(4) 0.006 1(1) 0.006 0(2) 0.006 1(2)

Ratio of variances �143 �291 �297 �293
�E
N� 23.902 044�31� 23.902 200�55� 23.902 17�21.4� 23.902 42�29�
�Ẽ
N� 23.902 020�2.4� 23.902 229�3� 23.902 25�1.2� 23.902 22�1.5�

Gain in computational effort a �167 �336 �318 �360
�E
N� Exact value 23.902 021 4 . . . 23.902 233 1 . . . b

T � Tc � 4.538 37 . . .

s�E�2
N 18.581(4) 25.97(3) 33.1(2) 35.3(2)
s�Ẽ�2
N 0.215(2) 4.85(1) 16.5(1) 16.9(2)

Ratio of variances �86 �5.4 �2.0 �2.1
�E
N� 23.073 34�13� 22.952 14�33� 22.890 2�12� 22.880 0�14�
�Ẽ
N� 23.073 45�1.3� 22.952 36�13� 22.890 8�7� 22.878 8�8�

Gain in computational effort a �100 �6.4 �3 �3.1
�E
N� Exact value 23.073 439 6 . . . 22.828 427 1 . . . b

T � 8

s�E�2
N 13.17(1) 10.96 11.1(2) 10.9(3)
s�Ẽ�2
N 0.041 0.455 0.8(1) 0.9(1)

Ratio of variances �321.2 �24 �13.9 �12
�E
N� 21.164 40�33� 21.115 56�48� 21.115 6�20� 21.116 5�25.6�
�Ẽ
N� 21.163 48�1.6� 21.115 02�8.2� 21.114 5�4.4� 21.114 5�5.6�

Gain in computational effort a �425 �34 �20.7 �20.9
�E
N� Exact value 21.163 492 6 . . . 21.114 544 4 . . . b

aSee text for definition.
bReference [5].
other words, according to Eq. (3) it represents the factor
by which it would be necessary to increase the number
of Monte Carlo steps in the standard approach to get the
same accuracy. Note that for L � 5 our Monte Carlo
value coincides with the exact one (computed by exact
numeration of the 2N configurations) with an accuracy of
less than 1026. Note also that our MC values converge
as the size is increased to the exact infinite-lattice value
as given by the Onsager solution [5]. At T � 8 (high-
temperature regime) our representation is not as good, but
still very satisfactory. As a function of the size, the gain
in computational effort converges and a value of about
20 is gotten. At the infinite-lattice critical value the re-
sults are less spectacular but still of interest. A converged
value of about 3 for the gain in efficiency is obtained. At
this temperature the correlation length for the spin vari-
ables diverges and more accurate representations for the
solution of Eq. (14) are needed. Starting from our basic
equation built from a transition probability corresponding
to local moves we need to resort to approximate solutions
which contain in some way the collective spin excitations.
Alternatively, we can change our fundamental equation
by resorting to a nonlocal transition probability density,
and then to a new operator H. A natural choice is, of
course, the transition probability of the Swendsen-Wang
4684
algorithm used here to generate configurations. Prelimi-
nary calculations show that statistical fluctuations are in-
deed strongly decreased. However, to sum up analytically
all contributions corresponding to the different Swendsen-
Wang clusters (action of H on c) is very time consuming,
and the advantages of the method can be lost. Some ap-
proximate scheme is clearly called for; this is left for fu-
ture development. Finally, a last important point is that
the gain in computational effort is found to be systemati-
cally greater (by about 50%) than the corresponding ra-
tio of variances. This result is a direct consequence of
the fact that the integrated autocorrelation time known
to control the amount of correlation between successive
measurements (see, e.g., [3]) has been decreased when
passing from the bare observable to the renormalized one.
Note that a similar behavior has also been obtained in
applications based on improved estimators [2,3]. With-
out entering into the details, it can be shown that this re-
sult is directly related to the fact that the fluctuations of
the renormalized observable are much smaller than in the
bare case.

The second application illustrates the method in the case
of a continuous configuration space (calculation of multi-
dimensional integrals). We have calculated a mean en-
ergy as it appears in the so-called variational Monte Carlo
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TABLE II. Energy of the helium atom. All quantities are
given in atomic units. Statistical uncertainties on the last digit
are indicated in parentheses.

Variational Monte Carlo

s�EL�2 0.040 9(2)
s�ẼL�2 0.006 88
Ratio of variances �5.9
�EL� 22.896 71�4.8�
�ẼL� 22.896 74�1.6�
Gain in computational effort a �9

Exact Green’s function Monte Carlo b

s�EL�2 0.041 1(9)
s�ẼL�2 0.008 55(8)
Ratio of variances �4.9
�EL� 22.903 745�99�
�ẼL� 22.903 734�33�
Gain in computational effort a �9
Exact energy 22.903 724 377 . . . c

aSee text for definition.
bReference [9].
cReference [10].

(VMC) methods [6]. Starting from a quantum Hamilton-
ian HQ (to be distinguished from our trial operator H) and
a known trial-wave function cT , our purpose is to compute
the variational energy Ey associated with cT . Ey can be
easily rewritten as an average over the probability distribu-
tion c

2
T , Ey � �EL� where EL � HQcT
cT is called the

local energy. Here, we consider the case of the helium

atom described by the Hamiltonian HQ � 21
2� �=1
2

1

�=2
2
� 2 2
r1 2 2
r2 1 1
r12 (atomic units) with usual

notations. As trial wave function a standard form has been
chosen [7],

cT ��r1, �r2� � exp

∑
ar12

1 1 br12
2 c�r1 1 r2�

∏
1s�r1�1s�r2� ,

(15)
where 1s�r� is the Hartree-Fock orbital as given by
Clementi and Roetti [8], and the variational parame-
ters have been chosen to be a � 0.5, b � 0.522, and
c � 0.0706. As already remarked, a natural choice for the
trial Hamiltonian H is a Schrödinger operator admitting
cT as ground state, Eqs. (10) and (11). Regarding c

we have chosen a form similar to the trial wave function
multiplied by some function of the potential energy.
Configurations are generated using a standard Metropolis
algorithm with local moves constructed using a Langevin
equation [7]. Results are presented in Table II. It is seen
that the introduction of the renormalized local energy
increases the efficiency of the Monte Carlo calculation by
about 1 order of magnitude.
In the last application it is shown that the method can
even be used in exact (zero-temperature) quantum Monte
Carlo (QMC) calculations. In QMC a combination of
diffusion and branching process is used to construct a
stationary density proportional to cTc0, where c0 is the
exact unknown ground-state wave function. By averaging
the local energy over this distribution, an estimate of the
exact energy E0 is obtained [6]. Although the analytical
form of the stationary density is no longer known, a
renormalized function whose average is identical to that
of the bare local energy can still be defined, ẼL � EL 1

�H 2 E0�c
cT , where H admits cT as eigenvector,
HcT � 0. Calculations have been done using the exact
Green’s function Monte Carlo of Ceperley and Alder [9].
Results are presented in Table II. They are of a quality
similar to that obtained in the variational case. About
1 order of magnitude in computer time has been gained.

To conclude, we have presented a simple and powerful
method to greatly increase at little cost the efficiency
of Monte Carlo calculations. The examples presented
have been chosen to illustrate the great versatility of
the method (discrete and continuous configuration spaces,
classical or quantum Monte Carlo, local or nonlocal
Monte Carlo updates). Although our examples have only
been concerned with total energies, let us emphasize
that the zero-variance principle is valid for any type of
observable including important quantities such as local
properties other than energy, differences of energies,
spatial correlation functions, etc.
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