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We consider a single particle which is bound by a central potential and obeys the Dirac equa
We compare two cases,a and b, in which the masses are the same butVa , Vb , where V is
the time component of a vector potential. We prove generally that for each discrete eigenvaluE
whose corresponding (large and small) radial wave functions have no nodes, it necessarily follows
Ea , Eb . As an illustration, this general relativistic comparison theorem is applied to approximate
Dirac spectrum generated by a screened-Coulomb potential.

PACS numbers: 03.65.Pm, 03.65.Sq
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The comparison theorem of nonrelativistic quantum
mechanics states that

Va , Vb ) Ea , Eb , (1)

whereV is an attractive potential which supports discret
eigenvalues. This theorem is usually proven for eve
eigenvalue by an application of the variational (min
max) characterization [1,2] of the discrete part of th
Schrödinger spectrum. Such a proof is unavailable for t
corresponding Dirac problem since the Dirac Hamiltonia
is not bounded below, and the spectrum cannot be defin
variationally. An early and very detailed analysis of th
Dirac spectrum for central potentials has been given
Rose and Newton [3]. The impossibility of a genera
proof of a comparison theorem for the Dirac problem ha
led to the commonly held belief that no such theorem
all could be established. In this paper we prove that f
attractive central potentials, (1) is valid for each discre
0031-9007�99�83(3)�468(4)$15.00
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Dirac eigenvalue whose wave functions have no node
that is to say, for the bottom of each angular-momentu
subspace.

The possibility of a theorem of this kind was sug
gested by an attempt to prove a comparison theore
for the nonrelativistic problemwithout the use of min-
max. If we write the two Schrödinger comparison Hamil
tonians in dimensionless form asHa � 2D 1 Va and
Hb � 2D 1 Vb and we write down the corresponding
eigenequations in one dimension, we get

2c 00�x� 1 Va�x�c�x� � Eac�x� , (2)

and

2f00�x� 1 Vb�x�f�x� � Ebf�x� . (3)

We now assume that the wave functions are normalize
we form the difference [Eq. (2)]f 2 [Eq. (3)]c, and we
integrate it over all space to obtain
Z `

2`
�Va�x� 2 Vb�x��c�x�f�x� dx � �Ea 2 Eb�

Z `

2`
c�x�f�x� dx . (4)
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This equation immediately establishes (1), provided t
wave functions have no nodes. If the potentials a
symmetric, and we consider the lowest odd state, th
the wave functions vanish at the origin and we obta
(4), with integrations on�0, `�; and this again proves (1).
Thus the theorem is established also for the bottom
the odd-parity space. Consequently, this result extends
the corresponding radial problem inN . 1 dimensions,
provided that we consider nodeless states at the bottom
each angular-momentum subspace.

In Section 1 we apply similar reasoning to the Dira
problem and we are able to prove that the comparis
theorem (1) is valid for every discrete eigenvalue whic
is at the bottom of an angular-momentum subspa
In Section 2 the new relativistic comparison theore
is applied to approximate the spectrum produced by
screened-Coulomb potential: a set of soluble comparis
potentials are generated by use of the “potential envelo
method.”
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1. The relativistic comparison theorem.—We consider
a single Dirac particle moving in a central vector potenti
with time componentV �r� and a fixed massm. Since
we are not able to accommodate variations in the sca
potential in the comparison theory presented here
do not allow for it at this stage; a more detailed rema
will be made later concerning this question. We adop
notation similar to that of Messiah [4] and Rose [5]. W
let c1 andc2 be, respectively, the “large and small” radia
wave functions used to construct the Dirac spinor cor
sponding to a total angular momentum ofj. We employ
the variablest � 61 andk � j 1

1
2 so that the parityP

of an energy eigenstate is given byP � �21�j1 t

2 � 6.
If the eigenvalues are labeledEP

nj , wheren � 1, 2, 3, . . . ,
enumerates the distinct radial states, then the
generacy of this energy symbol is exactly2j 1 1.
In this notation the principal quantum number for th
Coulomb problem becomesn � n 1 k 2

1
2 �1 2 t�.

Meanwhile, the boundary conditions and normalizatio
© 1999 The American Physical Society
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we have adopted for the radial functions are

c1�0� � c2�0� � 0 ,
Z `

0
�c2

1 �r� 1 c2
2 �r�� dr � 1 .

(5)

We now consider two different potentials Va and Vb;
we associate with them the corresponding pairs of radial
functions �c1, c2� and �f1,f2� and we obtain a pair of
coupled radial equations [5] for each problem:

c 0
2 2

tk
r

c2 � �m 1 Va 2 Ea�c1 , (6)

c 0
1 1

tk
r

c1 � �m 2 Va 1 Ea�c2 , (7)

f0
2 2

tk
r

f2 � �m 1 Vb 2 Eb�f1 , (8)
f0
1 1

tk
r

f1 � �m 2 Vb 1 Eb�f2 . (9)

We consider now the special combination of these four
equations which is given by multiplying each equation
by a wave function and summing, according to the
prescription

�Eq. �6��f1 1 �Eq. �9��c2 2 �Eq. �7��f2 2 �Eq. �8��c1 ,

and we find

�f1c2�0 2 �c1f2�0 � �f1c2 1 c1f2�

3 �Va 2 Vb 2 �Ea 2 Eb�� . (10)

By integrating (10) and using the boundary conditions, we
obtain
Z `

0
�f1c2 1 c1f2� �Va 2 Vb� dr � �Ea 2 Eb�

Z `

0
�f1c2 1 c1f2� dr . (11)
If the wave functions have no nodes, the factors involving
them on each side of (11) have the same sign; hence,
under these conditions, this equation establishes the com-
parison theorem (1) for the Dirac problem. It should
perhaps be mentioned here that in order to derive the
comparison result from (11), it is necessary to assume
that the potentials and the eigenvalues are both real: if,
for example, potential parameters stray into regions where
a corresponding eigenvalue becomes complex, then (11)
would no longer imply (1), since the complex numbers
are not well ordered.

We now turn to the corresponding problem for scalar
potentials. Let us suppose that the vector potentials are
the same and that the masses are given, respectively, by
ma�r� and mb�r�. The same type of reasoning as we have
used above leads to the expression
Z `

0
�f1c1 2 f2c2� �ma 2 mb� dr � �Ea 2 Eb�

Z `

0
�f1c1 1 f2c2� dr . (12)
It is clear that we are only able to draw the conclusion
Ea , Eb from (12) under inconvenient assumptions, such
as dominance of the large radial component. In the
general case, even for node-free wave functions, it seems
that no simple comparison theorem for scalar potentials
can be derived in this way; indeed, Greiner [6] has
exhibited an example (in one dimension) in which the
dependence of the energy on coupling to a scalar potential
is not monotone. In the nonrelativistic limit, with constant
masses, the well-known Hellmann-Feynman result [7–10]
follows, as we would expect.

2. Energy upper bounds for a screened-Coulomb po-
tential.—In order to study an application of the compari-
son theorem we need two potentials V �t��r� and V �r�
which are ordered, say,

V �t��r� $ V �r� . (13)

We choose for V �r� the screened-Coulomb potential
suitable for large atoms which has been studied by Mehta
and Patil [11] and is given by

V �r� � 2

√
y

r

!
�1 2 rl�1 2 1�Z���1 1 lr�� , (14)
where

y � aZ and l � 0.98aZ
1
3 . (15)

For the comparison potential V �t��r� we generate not one,
but a set of “ tangential” potentials by using the method
of “potential envelopes” [12,13]. The apparatus of this
theory is not essential to the illustration so long as (13) is
valid. We now give a short self-contained derivation of
this set of comparison potentials, and we also provide an
independent verification of (13).

The envelope method requires a soluble base poten-
tial which we take to be the pure hydrogenic potential
2u�r � uh�r�. This potential leads to a discrete spec-
trum which, in units of mc2 and for u , 1, is given ex-
actly [5] by

DP
nj�u� � D�u� � �1 1 u2�n 2

1
2 �1 2 t�

1 �k2 2 u2�
1
2 �22�2 1

2 , (16)

where k � j 1
1
2 , and n � 1, 2, 3, . . . , counts the dis-

crete eigenvalues for each given �t, j� pair.
If we write the potential (14) as the transforma-

tion V �r� � g���h�r���� of the pure Coulomb potential
469
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h�r� � 21�r, then we have

g�h� � yh 1 yl�1 2 1�Z�
∑
1 1

l

h 2 l

∏
. (17)

It follows immediately that g0�h� . 0 and g00�h� , 0; that
is to say, g is monotone increasing and concave. As
a consequence of this, every tangent line to g�h� is a
shifted-Coulomb potential of the form

V �t��r� � A�t� 1 B�t�h�r� � �g���h�t���� 2 h�t�g0���h�t�����

1 g0���h�t����h�r� , (18)

where r � t is the point of contact with V . We now
know that the potential inequality (13) is valid because
the concavity of g implies that it lies below its tangents.
For the present example we can also show, by a direct
calculation, that the potential difference is given by the
following clearly positive expression:

V �t��r� 2 V �r� �
y�1 2 1�Z�l2�r 2 t�2

r�1 1 lr� �1 1 lt�2 $ 0 . (19)

The eigenvalues corresponding to the shifted-Coulomb
potential (18) can be found exactly and are given immedi-
ately in terms of the known pure hydrogenic eigenvalues
D�u� by

E�t� � A�t� 1 D���B�t���� $ E . (20)

The inequality in (20) follows from the potential inequal-
ity (13) and our comparison theorem, provided the large
and small radial functions are node-free. For potentials
that are Coulombic near r � 0, the argument of Rose [5]
demonstrates that the number of nodes is the same for
c1 and c2 only if t � 21. Hence we must restrict our
considerations to the eigenvalues at the bottom of each
angular-momentum subspace, that is to say, to those with
t � 21, n � 1. All that remains is to minimize E�t� with
respect to t . 0 in order to obtain the best envelope ap-
proximation for each eigenvalue. By a simple change of
variable t ! u � g0���h�t����, the best upper energy bound
may be written in the much more compact form

EU � min
u[�0,1�

�D�u� 2 uD0�u� 1 V ���21�D0�u����� . (21)

The “principal quantum number” n of the Coulomb
problem may be defined generally by the expression
n � n 1 k 2

1
2 �1 2 t�. Thus, for the states whose en-

ergies obey the comparison inequality, we have n � k �
j 1

1
2 , P � �21�k21, and � � j 2

1
2 , where � is the or-

bital angular-momentum quantum number in the first two
components of the Dirac spinor. The spectroscopic desig-
nation is then n�j , where � � �0, 1, 2, . . .� � �s, p, d, . . .�.
In Table I we exhibit some upper bounds EU found by
Eq. (21), along with corresponding accurate approxima-
tions E found numerically.

3. Conclusion.—A comparison theorem is a very use-
ful general tool because it allows us to predict spectral
ordering without actually having to solve the eigenvalue
problems. In the relativistic case we are restricted to the
470
TABLE I. Upper bounds EU
j by the envelope method, and

accurate numerical values Ej , for the bottoms of the first two
angular momentum subspaces labeled by t � 21, and j � 1

2
and 3

2 . The spectral descriptions of these two eigenvalues are,
respectively, 1s 1

2
and 2p 3

2
.

Z EU
1�2 E1�2 EU

3�2 E3�2

20 24.2571 24.3157 20.485 22 20.533 61
30 210.2099 210.2960 21.3811 21.4659
40 218.9615 219.0732 22.8232 22.9448
50 230.7186 230.8543 24.8486 25.0070
60 245.7601 245.9189 27.4879 27.6825
70 264.4734 264.6545 210.7692 210.9997
80 287.4118 287.6148 214.7216 214.9877

bottoms of the angular-momentum subspaces. Perhaps
this limitation can be weakened in the future. Compu-
tations made with the screened-Coulomb potential have
not revealed any counterexample to the conjecture that (1)
is generally true, for all the discrete eigenvalues. Since
the energy functions D�u� for the hydrogenic problem are
monotone [13] in the coupling parameter u, and the cor-
responding functions E�V0� for the square well, studied
by Pieper and Greiner [6,14], are monotone, a counter-
example is certainly not immediately available. On the
other hand, it is unlikely that a simple extension could be
made to the proof given here so that it would apply also
to states which have nodes, since this is not possible in
the more regular Schrödinger case. Further progress will
probably have to await some kind of nonstandard exten-
sion of min-max theory rich enough to accommodate the
unbounded Dirac energy operator.

As an illustration, we have shown that the new relativis-
tic comparison theorem allows us to derive energy bounds
such as (21). Formulas like this have the advantage that
they describe approximately how the discrete spectrum
depends on all of the potential parameters. This quasi-
analytical information is complementary to purely numeri-
cal calculations.
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