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Power Laws in Solar Flares: Self-Organized Criticality or Turbulence?
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The statistics of quiescent times tL between successive bursts of solar flares activity, performed using
20 years of data, displays a power law distribution with exponent a � 2.4. This is an indication
of an underlying complex dynamics with long correlation times. The observed scaling behavior
is in contradiction with the self-organized criticality models of solar flares which predict Poisson-
like statistics. Chaotic models, including the destabilization of the laminar phases and subsequent
restabilization due to nonlinear dynamics, are able to reproduce the power law for the quiescent times.
A shell model of MHD turbulence correctly reproduces all the observed distributions.

PACS numbers: 05.65.+b, 47.27.Eq, 47.52.+ j, 96.60.Rd
Solar flares are sudden, transient energy release above
active regions of the sun [1]. Energy is released in
various form [thermal soft x-ray emission, accelerated
particles, hard x-ray (HXR) emission, and so on]. Parker
[2] conjectured that flares represent the dissipation at
the many tangential discontinuities arising spontaneously
in the bipolar fields of the active regions of the sun
as a consequence of random continuous motion of the
footpoints of the field in the photospheric convection [2].
Probability distributions, calculated for various observed
quantities, x, can be well represented by power laws of the
form P�x� � Ax2a . In particular from HXR emission,
the distribution of peak flux yields a � 1.7, that of
total energy associated with a single event yields a �
1.5, and finally the distribution of flare duration yields
a � 2 [3].

The conjecture by Parker and the power laws found
in the distributions of real flares stimulated a new way
of looking at impulsive events like flares. In fact,
Lu and Hamilton [4] pointed out that self-organized
criticality (SOC), introduced earlier [5], could describe
the main features of HXR flares [6,7]. What is usually
called SOC is a mechanism of charging and discharging,
apparently without tuning parameters, which reproduces
self-similarity in critical phenomena.

Lu and Hamilton [4] assume that the coronal magnetic
field evolves in a self-organized critical state in which an
“event” can give rise to other similar “events” through an
avalanche process (sandpile model). An active region on
the sun is thus modeled through a magnetic field B on a
uniform 3D lattice. In order to have a statistically station-
ary state, energy is injected into the system by adding a
small magnetic field increment dB at a random site on the
grid. When an avalanche takes place, the energy input is
suspended until all sites become stable. In this sense the
avalanches (flares) are fast phenomena, on a time scale
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much smaller than the injection mechanism. The large
popularity of these models settles on their capability to
reproduce the power law behavior in the distribution func-
tions of the total energy, the peak luminosity, and the du-
ration of avalanches.

What we want to stress in this Letter is the fact that
a different kind of statistics can be studied on solar
flare signals: the distribution of laminar or waiting times,
i.e., the time intervals between two successive bursts.
This distribution has been recently studied on solar
flares HXR events [8,9]. Wheatland et al. [9] have also
emphasized the fact that this kind of distribution is crucial
from the point of view of the avalanche model. SOC
models, indeed, are expected to display an exponential
waiting time distribution P�tL� � �tL�21 exp�2tL��tL��,
where �tL�, the average laminar time, depends on the
parameters of the model. This behavior is related to
the fact that the probability to give rise to an avalanche
as a consequence of each single throw of the magnetic
field in a random position is simply the ratio between
the volume occupied by clusters of minimally stable
states [5] and the total volume of the system. Then
one expects no correlation between successive bursts and
thus a trivial statistics (binomial or Poisson distribution)
for the laminar times. This is clearly observed in a
simulation of the SOC automaton that we have done (see
the inset of Fig. 1). On the contrary, when looking at
solar flares data, authors [8,9] found a more or less well
defined power law distribution. In particular, Wheatland
et al. [9], by performing a careful statistical analysis of
waiting time distribution on 8 years of solar flares HXR
bursts observed by the ICE�ISEE 3 spacecraft, have
shown that the distribution in no way can be attributed
to a nonstationary Poisson process.

We have done the same statistics on laminar phases
using 20 years of data from the National Geophysical Data
© 1999 The American Physical Society
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FIG. 1. Probability distribution of the laminar time P�tL�
between two x-ray flares for data set A (dashed line) and data
set B (full line). The straight lines are the respective power law
fits. In the inset we show, in linear-log scale, the distribution
for data set B (full line) and the distribution obtained through
the SOC model (dashed line) which displays a clear exponential
law. The variables shown in the inset have been normalized to
the respective root-mean-square values.

Center of USA. In this database starting and ending times
as well as peak times of HXR bursts associated with flares
from 1976 up to 1996, measured at the Earth by satellites
in the 0.1 to 0.8 nm band, are stored. We calculated
the laminar times as the time differences between two
successive maxima of the flares intensity recorded during
periods of activity of the same instrument. Two different
kinds of analysis have been performed: in the first one we
have built up a data set of about 1100 samples (hence on
data set A) by calculating only the differences between
the time of occurrence of flares within the same active
region, as identified through the Ha flares occurrence.
To build up the second data set (data set B), we have
considered the sun as a unique physical system, and
we have calculated the time differences between two
successive maxima of flare intensity regardless of the
position of the flare on the sun surface. In this way we
get a data set of about 32 000 samples. The analysis of
these data shows that, in both cases, laminar times display
a clear power law distribution P�tL� � At

2a
L with a �

2.38 6 0.03 in the range 6 # tL # 67 (reduced x2 �
2.2) for data set B and a � 2.4 6 0.1 (reduced x2 � 1.1)
for data set A (Fig. 1). The exact value of the exponent
can be affected by the finite length of the observation
times, which underestimates the occurrence of long waiting
times. However, these results, as well as those obtained
by previous authors [8,9], allow us to consider the power
law distribution of waiting times as firmly established as
the power laws observed for total energy, peak luminosity,
and time duration and force us to investigate whether
models different from SOC can account for all these
distributions.

It is worth noting that the occurrence of a power law in
the distribution of the laminar times is analogous for the
solar flares of the Omori’s law for the earthquakes [10]
and represents a clear indication of the existence, in the
flare dynamics of strong correlations between successive
bursts, at variance with the SOC model. The unique
possible origin of the correlations arises from nontrivial
evolution equations of the phenomenon. In particular,
let us note that Parker’s conjectures about solar flares
dynamics could be usefully investigated in the framework
of MHD turbulence.

Turbulence is a common phenomenon in fluids, where
chaotic dynamics and power law statistics coexist. More-
over turbulence displays time intermittency, in that dis-
sipative events are not uniformly but burstly distributed
in time, so that flares might be tentatively identified with
such events. Before introducing a turbulence model for
the Parker conjecture, it is worth noting that the inter-
mittent behavior can be observed also in simple dynami-
cal models. Let us consider the one dimensional random
map xt11 � rtxt�1 2 xt�, where at each step t the ran-
dom variable rt is extracted according to a given distri-
bution [11]. The dynamics is such that xt remains close
to zero for a certain time (laminar time) then there is a
short interval of strong activity (burst) after which a new
quiescent phase takes place. In this simple model one can
observe power laws not only for the energy distribution
(here defined as the integral of xt over the burst), but also
for the laminar times tL. The exponent of power law for
tL turns out to be a � 1.5 [12]. In spite of its simplicity,
the random map model contains some basic ingredients of
the relevant features of time intermittency in dynamical
systems, i.e., the destabilization of the laminar phase by
linear instability and the subsequent restabilization due to
the nonlinear dynamics.

Some attempts to reproduce the flare statistics from
direct numerical simulations of MHD equations have
been performed using 2D codes [13]. These attempts
suffer for some basic limitations. In fact, because of
the limited capability of computers, only low Reynolds
numbers are allowed and the statistics obtained are poor.
Moreover, to avoid the antidynamo theorem of 2D MHD,
the external forcing is supposed to act on the magnetic
field, at variance with the hypothesis that the driver of the
turbulent dynamics is related to the random motion due to
photospheric convection [2].

An alternative way to look at a turbulent MHD sys-
tem is represented by the so-called shell models [14]. In
these models one tries to reproduce at best the nonlinear
dynamics, but ignores from the beginning the details of
the spatial structure and its associated topology. A single
(complex) scalar variable un (and bn) is considered to be
representative of the velocity (magnetic) fluctuation as-
sociated with a wave number kn � k02n (n � 1, . . . , N).
The fact that the wave numbers kn are exponentially
4663
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spaced allows one to reach very large Reynolds numbers
with a moderate number of degrees of freedom and then
to investigate regimes of 3D MHD turbulence which are
not accessible by direct numerical simulation.

The evolution equations for the dynamical variables un

and bn are built up by retaining only the interactions be-
4664
tween nearest and next nearest neighbor shells in the form
of quadratic nonlinearities. The coupling coefficients of
nonlinear terms are determined by imposing the inviscid
conservation of the 3D MHD quadratic invariants [14,15].
The particular shell model we used in our simulation
reads [16]
dun

dt
� 2nk2

nun 1 fn 1 ikn

Ω
�un11un12 2 bn11bn12� 2

1
4

�un21un11 2 bn21bn11� 2
1
8

�un22un21 2 bn22bn21�
æ�

,

dbn

dt
� 2hk2

nbn 1 ikn�1�6� ��un11bn12 2 bn11un12� 1 �un21bn11 2 bn21un11� 1 �un22bn21 2 bn22un21���,
where n and h are, respectively, the viscosity and the
resistivity and fn is an external forcing term acting only
on velocity fluctuations.

The external forcing term has been set up in order
to model the driving mechanism due to the large scale
random motion of magnetic field lines footpoints. fn is
a stochastic variable acting only on the first two shells
of the velocity fluctuations. It is calculated according to
the Langevin equation dfn�dt � 2fn�t0 1 m, where t0
is the characteristic time of the largest shells (t0 � 10 in
our units) and m is a Gaussian white noise with s � 0.1.

This model has been shown to be able to reproduce a
dynamolike effect (inverse cascade of magnetic helicity),
which is typical of 3D MHD [16] as well as the time
intermittency through the analysis of the scaling laws
of the structure functions (paper in preparation, 1999).
In particular, time intermittency can also be observed
by looking at the energy dissipation defined as e�t� �
n

PN
n�1 k2

njunj
2 1 h

PN
n�1 k2

njbnj
2 (see Fig. 2).

As stated above we identify the intermittent spikes of
dissipation with the intermittent spikes on data [HXR,
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FIG. 2. Time series of energy dissipation e�t� for the shell
model. The parameters used in the simulation are N � 19,
n � h � 1027, and k0 � 1.
extreme ultraviolet (EUV), etc.] associated with flares.
Then we have performed on e�t� the same statistical
analysis done for the solar flare signals. We have
defined a burst of dissipation by the condition e�t� $ ec.
This definition allows us to calculate the distribution
functions for the peak values of the bursts, their total
energy (defined as the integral of the signal above ec)
and the duration of the bursts (defined as the time
during which the dissipation is above ec). We have
chosen the threshold as ec � � e�t� � 1 2s, where the
average and the standard deviation have been calculated
on the time intervals in between the bursts, through an
iterative process in order to take into account only the
background contribution. The results of the analysis are
shown in Fig. 3. Also in this case we observe clear
power law distribution functions with exponents a �
2.05 for the peak distribution, a � 1.8 for the total energy
distribution, and a � 2.2 for the burst durations. The
exponents are close to those obtained in analyzing solar
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FIG. 3. Total energy distribution P�e�, energy peak distribu-
tion P�p�, and bursts duration distribution P�tB� for the shell
model. The variables have been normalized to the respective
root-mean-square values. The straight lines are the fits with
power laws. The values of P�e� and P�tB� are offset by a fac-
tor of 100 and 1022, respectively.
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FIG. 4. The distribution of laminar times P�tL� for the shell
model, normalized to the root-mean-square. The straight line
is the fit with a power law.

flares data, but we do not think that the agreement is
particularly significant as the model exponents depend
on the value chosen for the threshold. In particular,
scaling exponents for the total energy, time duration, and
peak value distributions increase in absolute value when
increasing the threshold, the contrary occurring for the
waiting time distribution.

The relevant point is that, at variance with SOC mod-
els, MHD shell models display a power law statistics also
for the laminar times, as shown in Fig. 4. The scaling
exponent turns out to be a � 2.70, close to the one ob-
tained from the experimental data. The different behavior
of SOC models and turbulent MHD shell models is related
to the conceptually different mechanisms underlying the
SOC phenomenon and the phenomenon of intermittency
in fully developed turbulence. SOC models represent self-
similar phenomena, while the intermittent behavior of tur-
bulence is related to its chaotic nature [15]. The statistics
of the laminar times between two bursts is due to global
properties of the system (its memory) and thus it is more
relevant to characterize the dynamical behavior of the sys-
tem than the statistics of the properties of the single burst.
Moreover, our analysis shows that, since shell models are
able to reproduce the power law for the quiescent time,
the mechanism for destabilization of the laminar phases
and subsequent nonlinear restabilization is more directly
related to the nonlinear dynamics than to the particular in-
stability associated with magnetic field topology [17].
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