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Quasiparticle Thermal Conductivity in the Vortex State of High-Tc Cuprates
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We present the results of a microscopic calculation of the longitudinal thermal conductivity, kxx , of
a d-wave superconductor in the mixed state. Our results show an increase in the thermal conductivity
with the applied field at low temperatures and a decrease followed by a nearly field independent
kxx�H� at higher temperatures, in qualitative agreement with the experimental results. We discuss the
relationship between the slope of the superconducting gap and the plateau in kxx�H�.

PACS numbers: 74.25.Fy, 74.60.–w, 74.72.–h
While the origin of the unusual normal state properties
of the high-Tc cuprates remains controversial, many ex-
perimental results lend support to the belief that the super-
conducting state of these materials is relatively mundane
and consists of a pair condensate with an “unconventional”
order parameter, believed to be of d-wave symmetry, and
well-defined quasiparticle excitations above it. However,
transport measurements in the vortex state yield some sur-
prising results which question whether the low-temperature
physics of the cuprates is well understood.

Perhaps the most notable such example is the observa-
tion of a plateaulike feature in the magnetic field depen-
dence of the longitudinal thermal conductivity, kxx�H�,
in superconducting Bi2Sr2CaCu2O81d (BSCCO) [1] and
YBa2Cu3O72d (YBCO) [2]. At temperatures above a few
Kelvin kxx�H� initially decreases with applied magnetic
field, H, before becoming nearly field independent [1–
4]. The kink and hysteresis in kxx�H� observed in zero-
field cooled BSCCO [1,3] have not been found in YBCO
[2] or in the field-cooled BSCCO samples [4], and we
take the point of view that they are not a generic feature
of the kxx�H� dependence in cuprates. In some samples
the “plateau” is not reached, and kxx�H� decreases con-
tinuously for H # 14 T [2,4], as it does for conventional
superconductors for H ø Hc2 [5]. This is in sharp con-
trast to the behavior of the thermal conductivity of the
cuprates at ultralow temperatures, which increases with H
[3,6]. Moreover, both features have been observed in the
same sample [3], suggesting that the two regimes should
be understood within the same approach, which presents a
challenge to theories of quasiparticle transport in the vor-
tex state of the cuprates.

Existing theories are based on the observation that, for a
single vortex, the properties of superconductors with lines
of nodes in the energy gap are dominated by extended
quasiparticle states, rather than, as in the s-wave case,
by localized states in the vortex cores [7]. The magnetic
field is taken into account semiclassically, by introducing
a Doppler energy shift due to the circulating supercurrents
[7]. In one approach physical quantities are computed
locally and are averaged over a unit cell of the vortex
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lattice [8]. The results obtained within this framework
describe experimental results quite well [8–10], and the
predictions for kxx�H� by Kübert and Hirschfeld [9] fit
the ultralow-T measurements [6]. The results of Ref. [9]
show a decrease in kxx�H� at higher T ø Tc, but not a
plateau. A similar approach was used for heavy fermion
superconductors [11].

Franz [12] has pointed out that the averaging pro-
cedure used in Refs. [8–10] neglected scattering from
the vortex lattice. He included the scattering semi-
phenomenologically, assuming a completely disordered
vortex lattice and a Matthiesen-type rule for the impurity
and vortex contributions to the lifetime [13]. He predicted
that at any T # Tc kxx�H� will approach asymptotically
the universal value [14,15] k00 � pTN0y2�6D0, where
N0 is the normal state density of states at the Fermi sur-
face, y is the Fermi velocity, and D0 is the gap amplitude.
His results are in qualitative agreement with the results of
Ref. [2], but the theory requires additional assumptions to
explain the low-T limit. Consequently, no existing theory
explains both the low-T results and the plateau.

In this Letter we present a microscopic theory of the
thermal conductivity of a two-dimensional clean (l ¿ j0,
where l is the mean free path, and j0 is the coherence
length) d-wave superconductor in the vortex state, with
the field perpendicular to the basal plane and thermal
current in the plane. Our results fit the low-T data of
Ref. [6] and show a plateaulike feature at higher T . We
employ the quasiclassical method [16,17], in which the
basic quantity is the matrix Green’s function integrated
over the quasiparticle energy,

bg�f, R; vn, vn0� �
Z dzp

p
bG�p, R; vn, vn0�

�

µ
g 2f
fy ḡ

∂
. (1)

Here the diagonal elements, g and ḡ, are the particle and
hole propagators, respectively, the off-diagonal elements,
Gorkov’s anomalous functions f and fy, are proba-
bility amplitudes for the creation or destruction of a
Cooper pair, R is the center of mass coordinate, zp is
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the energy of a quasiparticle with momentum p mea-
sured relative to the Fermi surface, and f is the angle
parametrizing the cylindrical Fermi surface. The spa-
tial dependence of the vortex lattice is modeled by
an Abrikosov-like solution D�R, f� � D�R�w�f�, where
D�R� �

P
ky

Cky e
ikyy exp�2�x 2 L2ky�2�2L2�, the mag-

netic length L � �2eH�21�2 (h̄ � c � 1 throughout the
paper), and w�f� � cos2f is the angular dependence of
the gap [18].

We use the quasiclassical method in the framework
proposed in Ref. [20] for s-wave superconductors near
Hc2. In that approach the diagonal elements of bg are
approximated by their spatial averages, while the exact
spatial dependence of the off-diagonal elements is kept.
The authors of Ref. [20] noticed that g and ḡ are periodic
in R with the periodicity of the vortex lattice, and that
Fourier components gK with reciprocal vortex lattice
vectors K fi 0 are smaller than gK�0 (which is the spatial
average of g) by a factor exp�2L2K2�. This approach
provides a very accurate description of the vortex state in
conventional superconductors [20–24]. The analysis of
Ref. [20] relies on the fact that the spatial dependence
of the order parameter is given by an Abrikosov-like
solution of the linearized Ginzburg-Landau equations,
and therefore works especially well in extreme type-II
superconductors where it can be extended over almost the
entire region of linear magnetization [25]. For an s-wave
superconductor it breaks down at fields where properties
are determined by the states bound to vortex cores.
In unconventional superconductors where properties are
dominated by extended states [7] the approach works
down to fields close to Hc1, i.e., for all experimentally
relevant fields [19].

The leading order quasiclassical propagator is deter-
mined from equations [23,26]

�2 evn 1 v�= 2 2ieA��f � 2iD�R�g cos2f , (2)

�2 evn 2 v�= 1 2ieA��fy � 2iD��R�g cos2f , (3)
complemented by the normalization condition g2 2

ffy � 21. Here A � �0, Hx, 0�, and the renormal-
ized frequency, i evn � ivn 1 is�i evn�, depends on
the self-energy due to impurity scattering, s, which
is determined within the t-matrix approximation [27].
We ignore corrections to the impurity vertex due to the
magnetic field, which is justified when L ø l. Since
L � 183 Å�

p
H�tesla�, for clean samples this condition

is satisfied at least above 0.1–0.5 T.
The solution of Eqs. (2) and (3) is known to be

[23,26] g � 2i sgn�vn�P�f, evn�, where P�f, evn� �
�1 2 i

p
p �2LD�y�2W 0�un� cos22f�21�2, the function

W�u� � e2u2
erfc�2iu�, un � 2i evnL sgn�vn��y, and

D is the spatial average of the amplitude of the order
parameter. In the limit H � 0 setting D equal to the
gap amplitude, D0, we recover the BCS Green’s func-
tion and consequently all the results of the standard
“dirty d-wave” theory [28]. For a pure sample at low
fields the residual density of states (DOS) N�0��N0 �
�y�LD0p

p
2� ln�8

p
2 LD0�y� ~

p
H ln�Hc2�H�; the field

dependence differs by a logarithm from the single vortex
result of Volovik [7]. For the range of fields where com-
parison with experiment has been made the logarithm is
nearly constant, and the result for the DOS agrees with that
of Ref. [8] up to a numerical factor. In the following we
consider scattering in the unitarity and Born limits, so that
the parameters of the theory are the normal state scattering
rate, G, and the dimensionless quantity LD�y. The latter
can be estimated by setting D � D0�1 2 H�Hc2�1�2,
and noticing that LD0�y � �Lkf�2� �y2�y�, where
y2 is the slope of the gap at the node. In BSCCO
kf � 0.737 Å21 and is relatively doping independent [29],
then LD�y � a

p
�1 2 H�Hc2��H; where, for field in

tesla, a � 3.5 for the overdoped case, where y�y2 � 20,
but becomes smaller on the underdoped side [30]. In
YBCO, taking kf � 0.8 Å21 [31], we obtain a � 5
if y�y2 � 14 [6], or twice that value if y�y2 � 7 [32].

The heat current can now be determined from the linear
response equations [24,26]

jh � pN0 lim
iv0!i01

X
vn

Z
df v�f� �v�f� ? =T �

3 vn�vn 2 v0�
g�vn� 2 g�vn 2 v0�

i ev0 1 2b
, (4)

where b � �Dfy�vn� 1 D�f�vn 2 v0����g�vn� 2

g�vn 2 v0��. This leads to the thermal conductivity
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p
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3
Re�P� ev�W�u��

ReP� ev�
cos22f . (6)

Since Re�P� ev, f�� is the angular dependent DOS and
t� ev, f� is a transport lifetime, Eqs. (5) and (6) generalize
the normal state expression kxx � kn � p2N0y2Tt�6.
There is a contribution to the quasiparticle lifetime from
Andreev scattering off the vortex lattice, which has the
same symmetry on the Fermi surface as the gap function,
and is therefore more important the higher the quasiparticle
energy. This contribution appears even for a periodic vor-
tex lattice, since Bloch’s theorem only forbids scattering
from a periodic potential in the absence of impurity broad-
ening of the quasiparticle wave packet, not in the presence
of impurities. Note that the dependence of the DOS and
the scattering rate on angle cannot be disentangled, in con-
trast to the assumption of Ref. [12]. Also, it is clear from
the form of Eq. (5) that a simple scaling form as a function
of T�

p
H cannot be expected.
4627



VOLUME 83, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 29 NOVEMBER 1999
First, we consider the limit T � 0, where analytic results
can be obtained. It is convenient to analyze the thermal
conductivity in terms of a transport lifetime tH , defining
kxx�H��T � p2N0y2tH�6, and expressing tH in terms
of the lifetime teff � 1��2g�, where g � s�v � 0� is
the zero-frequency scattering rate. For H � 0 we ob-
tain tH � kE�k��pD0, where E is the complete ellip-
4628
tic integral, and k � �1 1 �2D0teff�22�21�2 in agreement
with Refs. [15,33]. For D0teff ¿ 1 we recover the uni-
versal limit kxx � k00 � pTN0y2�6D0 [14,15]. At finite
fields the integral in Eq. (5) is evaluated approximately
to give tH � �teffy�4

p
p LD

2
0�1�2. In the “clean” limit

y�L ¿ g for the important cases of Born (GB) and uni-
tarity (GU) scattering, we find
tH �
Ω

�p�32�1�4�GBD0�21�2 ln21�2�8
p

2 LD0�y� ;
�128p3�21�4�GUD0�21�2�y�LD0� ln1�2�8

p
2 LD0�y� .

(7)
This expression is in good agreement with the numeri-
cal results at intermediate fields. In Fig. 1 we use the
numerical evaluation of Eq. (5) to compare kxx�H� for
Born and unitarity scattering. In the case of Born scat-
tering kxx�H� only reaches the universal limit at exponen-
tially small fields and is approximately field independent
at higher H [Eq. (7)]. In the unitarity limit, on the other
hand, kxx�H� increases approximately as

p
H at low fields

and the approach to k00 is clearly seen. At low T it is seen
that kxx�H� tends to k00 over a field range of order a few
tesla [6], and that the field dependence is close to

p
H at

low T [3]. This suggests that impurity scattering is close
to the unitarity limit at low temperatures, and we consider
this limit hereafter. The H dependence of tH differs from
that found in the Doppler shift theory [9]; however, sincep

lnH varies slowly, for experimentally accessible fields
the behavior of kxx�H� is close to that obtained by Kübert
and Hirschfeld [9]. In Fig. 2 we fit the data of Ref. [6].
Using the value of y�y2 � 14 from Refs. [6,34] we find
G to be about 4 times greater than the estimate of Ref. [6].
In the present theory kxx�H� increases faster with field the
smaller the slope of the gap, approximately as

p
H�a2G,

see Eq. (7), so that the same data can be fit on assuming a

FIG. 1. Field dependence of the thermal conductivity at T �
0 for scattering in the unitarity (solid lines) and Born (dashed
lines) limits. Inset: Low field behavior, normalized by the
universal value k00. Hc2 � 150 T.
smaller impurity concentration if we allow for a larger ra-
tio y2�y [32]. This also implies that a smaller slope of the
gap can result in a larger increase in kxx�H� for a dirtier
sample, see Fig. 2, which may be a part of the explanation
of a faster increase of kxx�H� in nominally dirtier BSCCO
compared to YBCO [3].

At finite temperatures the integration in Eq. (5) has to
be carried out numerically; we confine ourselves to the
regime where the gap is temperature independent. We
have checked and find agreement with previous results
at H � 0 [15]. k�0��T increases rapidly for T ¿ g,
and for clean samples at T � 0.1D0 it exceeds k00
by 2 orders of magnitude. At the same time at strong
fields, y�L ¿ T , kxx�H��T is controlled by the field
strength and is only weakly temperature dependent. The
field dependence at T � 0 is weak, close to

p
H, so

that for H � 10 T kxx�H��T # 10k00�T . An immediate
conclusion is that for T . g there is a steep drop in
kxx�H� at low fields, followed by a crossover to the

p
H-

like behavior. This crossover occurs when y�L � T , at
a field H� ~ T2, as indicated experimentally [1,3].

In Fig. 3 we show the results: at high T the ratio
kxx�H��kxx�0� decreases continuously as a function of
field; however, as the temperature is lowered a plateau
develops, and at even lower T a pronounced minimum

FIG. 2. Field dependence of kxx�H� at T � 0 compared to
data from Ref. [6].
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FIG. 3. Top: field dependence of kxx�H��k�0� for G �
0.003D0 and a � 7 at temperatures where kxx�H� is decreas-
ing; bottom: the change in the thermal conductivity as a func-
tion of field for different temperatures.

appears in the field dependence. As the lower panel
demonstrates there is a transition to an increasing kxx�H�
at the lowest temperatures. Numerically, we find that
at fixed T a smaller value of a corresponds to a more
pronounced plateau in kxx�H�. This implies that the
nearly field independent thermal conductivity should be
more evident in the underdoped cuprates [30].

To summarize, we give a theory of the thermal conduc-
tivity of a d-wave superconductor in the vortex state as
a function of field at T ø Tc. In zero field and at low
T we recover the universal results [14,15]. We find that
there exists a contribution to the transport lifetime due to
scattering off the vortices, which has the same symmetry
as the gap function. Consequently, at low temperatures
when most of the quasiparticles are near the gap nodes it
plays a minor role and the effect of the field is to increase
the DOS and the thermal conductivity. In contrast, at high
T the main effect of the vortices is to introduce a new
scattering mechanism, and kxx�H� decreases sharply to a
plateaulike feature at higher fields (a broad minimum); the
crossover field scales with T2. This behavior is in agree-
ment with experimental results [1–4,6]. Finally, it is im-
portant to compare the predictions of our theory with the
measurements of the transverse (Hall) thermal conductiv-
ity, kxy [2], to which phonons do not contribute. At low
fields kxy is given by Eq. (5) with the kernel txy� ev, f� �
wct� ev, f��2 Re�s� ev��. However, as the measurements
are taken at T $ 20 K, in a regime where it is necessary
to include inelastic scattering in the analysis of both longi-
tudinal and transverse thermal conductivity [35], we defer
a discussion of this issue until later.
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