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Scaling Approach to Calculate Critical Exponents in Anomalous Surface Roughening
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We study surface growth models exhibiting anomalous scaling of the local surface fluctuations. An
analytical approach to determine the local scaling exponents of continuum growth models is proposed.
The method allows one to predict when a particular growth model will have anomalous properties
(a fi aloc) and to calculate the local exponents. Several continuum growth equations are examined as
examples.

PACS numbers: 64.60.Ht, 05.40.–a, 05.70.Ln, 81.10.Aj
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Kinetic roughening of surfaces in nonequilibrium con
ditions has been a subject of great interest in the past f
years. This is mainly due to the many important applic
tions of the theory of surface growth including molecula
beam epitaxy (MBE), fluid flow in porous media, an
fracture cracks among others [1]. Growth processes ha
very often been shown to exhibit scaling properties th
allow one to divide the models into universality classe
characterized by the value of the critical exponents [1,
Theglobal interface width in a system of total lateral siz
L, which is the root mean square of the fluctuations
the surface height, scales according to the Family-Vics
ansatz [3] as

W�L, t� � ta�zf�L�t1�z� , (1)

where the scaling functionf�u� behaves as

f�u� �
Ω

ua if u ø 1 ,
const if u ¿ 1 .

(2)

The roughness exponenta and the dynamic exponent
z characterize the universality class of the model und
study. The ratiob � a�z is the time exponent.

However, very recent numerical studies have revea
a rich variety of interesting phenomena, which are poor
understood at present. In particular, it has been sho
that many growth models [4–11] exhibitanomalous
roughening, i.e., a different scaling for the global an
the local surface fluctuations. This leads to the existen
of an independentlocal roughness exponentaloc that
characterizes the local interface fluctuations on sca
l ø L and differs froma.

A general analytical method to determine anomalo
exponents from the continuum growth equations is st
lacking. In particular, a dynamic renormalization-grou
(RG) calculation in the Lai, Das Sarma, and Villain
(LDV) nonlinear continuum model has had only limite
success [12] because of the existence of nonperturba
infrared singularities that are inaccessible to the usual d
namical RG analysis. Therefore, most efforts have be
focused on determining the anomalous critical expone
using simulation of discrete models or direct numeric
solutions of the Langevin-type equations of growth.

In this Letter, we propose a new analytical approa
to determine the scaling exponents of the local surfa
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fluctuations in continuum growth models exhibitin
anomalous kinetic roughening. Our method allows o
to predict when a particular growth model is expected
have anomalous properties (a fi aloc) and, in principle,
also to determine the local exponents. We illustrate
method by studying several growth equations with a
without anomalous scaling.

We shall be interested here in continuum grow
models ind 1 1 dimensions which dynamics is expecte
to be described by the Langevin-type equation

≠h
≠t

� F�=h� 1 h�x, t� , (3)

where h�x, t� is the height of the interface at substra
position x at time t. The actual form of the function
F�=h� defines a particular model [13].h�x, t� is a noise
term uncorrelated in space and time,�h�x, t�h�x0, t0�� �
2Dd�x 2 x0�d�t 2 t0�.

The scaling properties of the local surface fluctuatio
can be investigated by computing either the height-he
correlation function,G�l, t� � ��h�x 1 l, t� 2 h�x, t��2�,
where the average is calculated over allx (overline) and
noise (brackets), or thelocal width, w�l, t� � �����h�x, t� 2

�h�l�2�l���1�2, where �· · ·�l denotes an average overx in
windows of sizel. For growth processes in which a
anomalous roughening takes place these functions s
as

w�l, t� �
q

G�l, t� � tbfA�l�t1�z� , (4)

with an anomalous scaling function [7–9] given by

fA�u� �
Ω

ualoc if u ø 1 ,
const if u ¿ 1 , (5)

instead of Eq. (2). The standard self-affine Family-Vics
scaling [3] is then recovered whena � aloc.

It is important to note that anomalous scaling ste
from the fact that the mean square local slope ha
nontrivial dynamics. A standard (Family-Vicsek) se
affine scaling of the local interface fluctuations, i.e.,a �
aloc, implies that the square local slopeG�l � a, t� �
��h�x 1 a, t� 2 h�x, t��2�, wherea is the lattice spacing
becomesG�a, t� � const very rapidly in time. One ca
also see that this constant must go to zero asa ! 0.
© 1999 The American Physical Society
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However, as can be easily seen from Eqs. (4) and (5),
in growth models exhibiting anomalous scaling the local
slopes scale as

G�a, t� � t2k , (6)

where the exponent k � b 2 aloc�z . 0. The existence
of such a diverging mean local slope introduces a new
correlation length in the growth direction, which enters
the scaling of the local fluctuations of the height. There-
fore, in any growth model, the existence (or absence) of
anomalous scaling of the local height fluctuations can be
investigated by computing the mean local slope G�a, t�.
In the continuous limit, a ! 0, G�a, t� can be written as
G�a, t� 	 s�t�a2, where

s�t� � ��=h�2� . (7)

This corresponds to calculating the mean square local
derivative of the interface height. In general, this quantity
scales as a power law s�t� � t2k . Negative values of
the exponent k will result in a normal Family-Vicsek
scaling of the local fluctuations with the same roughness
exponent. On the contrary, for k . 0 the correlation
length s�t� diverges in time and becomes a relevant length
scale in the problem that changes the local scaling, as
discussed above. In this case, anomalous scaling with a
local roughness exponent

aloc � a 2 zk (8)

is expected to occur. As we will see in the following, this
simple observation allows us to find a general method to
compute anomalous critical exponents. Note also that the
exponent k corresponds to the anomalous time exponent
b� in Refs. [6,8,9].

Now, let us see how the scaling behavior of the mean
local slope s�t� can be obtained from the continuum
growth equation. By applying the operator = to both
sides of the growth equation (3) one gets to an equation of
motion for the local derivative Y�x, t� � =h of the form

≠Y

≠t
�

dF

dY
=Y 1 =h . (9)

In general, this Langevin equation may contain nonlinear
terms that break the translational symmetry h ! h 1 c
in the growth direction. This implies that the resulting
interface Y�x, t� may not be rough (a � 0).

The global width of the interface Y�x, t� is given by

WY�t� � �Y�x, t�2�1�2 � ��=h�2�1�2, (10)

where �=h� � 0 has been used. This leads to the general
result that s�t� � W2

Y�t� and the exponent k of the
average local interface slope s�t� � t2k is given by the
time exponent of the global width of the local derivative
Y�x, t�,

WY�t� � tk . (11)

It then becomes clear that one could obtain the anomalous
exponents of the interface h�x, t� by finding the time
scaling behavior of the fluctuations of Y � =h.
In the following we investigate the existence of anoma-
lous scaling in several continuum growth models. In the
examples that we analyze here, a Flory-type approach in-
troduced by Hentschel and Family [14] suffices to obtain
the exponent k from the corresponding Eq. (9) for every
model in good agreement with existing simulation results.
The Flory approach can be seen as a stability analysis
of the equation of motion (9) for the corresponding local
derivative Y�x, t� of the interface.

Kardar-Parisi-Zhang equation.—The first system we
examine is the noise-driven interface growth model given
by the Kardar-Parisi-Zhang (KPZ) equation [15]

≠h
≠t

� n=2h 1 l�=h�2 1 h�x, t� . (12)

This equation was originally introduced to describe bal-
listic deposition growth far from equilibrium. In 1 1 1
dimensions the critical exponents a � 1�2 and z � 3�2
can be calculated exactly [15]. On the basis of much nu-
merical work, it is well established that the KPZ equation
does not exhibit anomalous roughening. Let us see how
this result can be derived in dimension 1 1 1 by use of
our approach.

In this case, the growth equation for the local deriva-
tive, Eq. (9), reads

≠Y

≠t
� n

≠2Y

≠x2 1 l
≠

≠x
Y2 1

≠h

≠x
, (13)

in 1 1 1 dimensions. From this growth equation the
scaling behavior of the fluctuations of the interface Y�x, t�
can be obtained. We find that the width scales as
WY�t� � t21�5, where the exponent can be obtained by
a Flory-type approach [14] as follows.

In the spirit of Ref. [14], we assume that at long times
t ¿ tl , and averaged over length scales l, the typical
magnitude of the fluctuations in Y�x, t� scale as Yl , and
that these fluctuations last for times of the order tl . The
idea now is to estimate the magnitude of the individual
terms. Basically for any equation such as Eq. (13)
to show time scaling each separate term, when coarse
grained over length scales l, must be of the same order of
magnitude or negligible. Only under these circumstances
can scaling behavior arise. The various terms in Eq. (13)
may be estimated as �j≠Y�≠tj�l � Yl�tl , �j≠2Y�≠x2j�l �
Yl�l2, �j≠Y2�≠xj�l � Y

2
l �l. As for the noise, one can

estimate its fluctuations on length scales l and time
scales tl as �j≠h�≠xj�l � �l3tl�21�2 for smooth surfaces,
while for rough surfaces �j≠h�≠xj�l � �Yll2tl�21�2 (see
Ref. [14] for details). Note that the correct scaling of the
noise term depends on the particular equation under study.

At sufficiently large length scales the nonlinear term
in Eq. (13) will dominate the diffusion term, and, so,
equating the �j≠Y�≠tj�l term with the nonlinear term we
obtain that a typical fluctuation scales as Yl � l�tl . To
proceed further we now equate our estimate for the noise
fluctuation �Yll2tl�21�2 to the inertial term, which gives
4595
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Yl � �tl�l2�1�3. Thus we can estimate that a fluctuation
of Y scales in time as Yl � t

21�5
l .

In the case of the KPZ equation in 1 1 1 dimen-
sions a negative exponent k � 21�5 is found indicat-
ing a standard scaling as expected. A similar Flory-type
computation also shows that, in fact, the KPZ model
exhibits a self-affine scaling in d 1 1 dimensions and
k � 21��4 1 d�.

A particular case of the KPZ equation is the linear
interface growth model (l � 0), first studied by Edwards
and Wilkinson [16]. For this model Eq. (13) can be
solved exactly and we obtain the exponent k � 21�4,
as corresponds to a standard Family-Vicsek scaling.

Surface growth with conservation law.—The KPZ
equation does not conserve the total volume of the
interface. The conserved version of KPZ was studied by
Sun, Guo, and Grant (SGG) [17] and is given by

≠h
≠t

� 2K=4h 1 l=2�=h�2 1 hc�x, t� , (14)

where

�hc�x, t�hc�x0, t0�� � 22D=2d�x 2 x0�d�t 2 t0� . (15)

Here the exponents are exact in any dimension [17], in
particular, a � 1�3 and z � 11�3 for d � 1. We have
investigated the possibility of anomalous scaling in this
model in 1 1 1 dimensions. From the corresponding
equation for the local derivative Eq. (9) and the noise
fluctuations ��l3tl�21�2, we obtain the scaling behavior
WY�t� � t22�11 for the fluctuations of Y�x, t�. This result
shows that the SGG equation has also a normal scaling of
the local fluctuations of the height.

Linear MBE model.—As a simple example of anoma-
lous roughening, we now consider the linear model for
MBE growth [18,19] given by

≠h
≠t

� 2K=4h 1 h�x, t� . (16)

Despite its simplicity, this equation has played an impor-
tant role in the theory of MBE. The critical exponents
are easily calculated in any dimension, and, in particu-
lar, one has a � 3�2 and z � 4 in dimension d � 1.
The model exhibits superrough interfaces (a . 1). This
leads to anomalous (superrough) scaling [8,9]. In fact, nu-
merical simulations [8,9,18,19] of Eq. (16) showed that
the local scaling is given by Eqs. (4) and (5) with a local
roughness exponent aloc 	 1.

In this case the growth equation for the local derivative,

≠Y

≠t
� 2K

≠4Y

≠x4 1
≠

≠x
h�x, t� , (17)

is linear and can be easily solved. The Flory approach
now gives the exact exponent k. We can estimate the
curvature diffusion term as �j≠4Y�≠x4j�l � Yl�l4, being
the estimate for the noise term �j≠h�≠xj�l � �l3tl�21�2

in this case. Equating fluctuations of each of the two
terms on the right-hand side of Eq. (17) with the inertial
term, we obtain the scaling behavior WY�t� � t1�8 for
4596
the width of the local interface derivative. The positive
value of the exponent k means that the local slope s�t�
becomes a relevant correlation length in the problem and
anomalous roughening is to be expected. The scaling
relation (8) gives us an exact determination of the local
roughness exponent aloc � 1 for this model in dimension
d � 1. This is in good agreement with existing numerical
results [8,18,19].

Random diffusion model.—So far we have been con-
sidering growth models in which the only source of ran-
domness is in the influx of particles on the surface. Let
us now consider the growth model

≠h
≠t

�
≠

≠x

∑
D�x�

≠h
≠x

∏
1 h�x, t� , (18)

where D�x� . 0 is a quenched columnar disorder with
no correlations. This random diffusion coefficient is
distributed according to P�D� � D2m for D , 1 and
P�D� � 0 for D . 1. This model describes a fluid
interface advancing through a stratified porous medium
with long range correlations in the growth direction.

The random diffusion model was originally introduced
[6] to demonstrate that anomalous roughening is not due
to superroughening effects, but it can also take place in
models in which a , 1. The critical exponents depend
on the disorder strength m and can be calculated exactly
[6], a � 1��2�1 2 m�� and z � �2 2 m���1 2 m� for
0 , m , 1. This model exhibits anomalous roughening
with a local roughness exponent aloc � 1�2 that is
independent of the disorder [6].

The existence of anomalous roughening in this model
can be rederived by use of our approach as follows. The
growth equation for the local derivative

≠Y

≠t
�

≠2

≠x2 �D�x�Y� 1
≠

≠x
h�x, t� (19)

can be solved exactly to obtain the time scaling behavior
of WY�t� � tk . We find that k � m��2�2 2 m�� for 0 ,

m , 1, which gives us a local roughness exponent aloc �
a 2 zk � 1�2 in agreement with earlier results [6].

Lai–Das Sarma–Villain equation.—The last example
we study is the LDV [20,21] equation for MBE growth,

≠h
≠t

� 2K=4h 1 l=2�=h�2 1 h�x, t� . (20)

This equation is expected to describe the behavior of the
long-wavelength fluctuations of the interface height in
several discrete models of MBE growth [5,7,11,21,22].
Note that this equation differs from the SGG equation
discussed above in the nonconserved character of the
noise in this case.

According to a dynamical RG analysis of Eq. (20) the
global exponents a � �4 2 d��3 and z � �8 1 d��3 are
expected to be exact to all loops. However, numeri-
cal simulations of the LDV equation and several discrete
growth models in the same universality class have shown
that the model exhibits anomalous scaling with a local
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roughness exponent aloc 	 0.7 [5,7,11] in 1 1 1 dimen-
sions. A perturbative dynamic RG approach to Eq. (20)
showed [12] the existence of a strong-coupling infrared
singularity that prevented one from obtaining the local
anomalous behavior by perturbative methods.

Again, the existence of anomalous scaling in this model
in 1 1 1 dimensions can be investigated by use of the
growth equation for the local derivative of the interface.
In this case Eq. (9) reads

≠Y

≠t
� 2K

≠4Y

≠x4 1 l
≠3

≠x3 �Y2� 1
≠

≠x
h�x, t� . (21)

A Flory approach can also be applied to this case
to determine the scaling of WY � tk . As we did
for the KPZ equation, we can estimate the terms in
Eq. (21) as �j≠Y�≠tj�l � Yl�tl , �j≠4Y�≠x4j�l � Yl�l4,
�j≠3Y2�≠x3j�l � Y

2
l �l3, and the noise being

�j≠h�≠xj�l � �Yll2tl�21�2 as in the KPZ case. As-
suming that the nonlinear term dominates the curvature
diffusion term at large scales, we obtain WY � t1�11.

According to this the exponent k � 1�11 is positive
and, as a consequence, the LDV equation in 1 1 1
dimensions is expected to display anomalous roughening.
The local roughness exponent aloc � 8�11 	 0.73 is
given by the scaling relation (8) with a � 1 and z � 3
for d � 1. Our estimate for aloc is in excellent agreement
with the numerical result aloc 	 0.73 6 0.04 [5].

In summary, we have introduced a new method to cal-
culate the local roughness exponent in growth models ex-
hibiting anomalous kinetic roughening. We have shown
that a divergent dynamics of the mean square local deriva-
tive, s�t� � t2k with k . 0, is the cause for an anomalous
roughening of the local surface fluctuations. The expo-
nent k can be obtained by studying the time scaling be-
havior of the fluctuations of the local derivative. The local
roughness exponent can then be obtained by use of a scal-
ing relation, Eq. (8). We have examined the existence of
anomalous roughening in several models. For the linear
models our results are exact. Nonlinear growth equations
were studied by a scaling approach, which gave results in
good agreement with existing simulations.

Finally, our findings indicate that a self-affine (a �
aloc) Family-Vicsek scaling of the interface fluctuations
is the result of a fine balance among the relevant terms
in the growth equation. This balance can be altered by
including conservation laws or higher order nonlinear
terms resulting in a divergent behavior of the local
derivatives s�t� and anomalous scaling.
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