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Scaling Approach to Calculate Critical Exponentsin Anomalous Surface Roughening
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We study surface growth models exhibiting anomalous scaling of the local surface fluctuations. An
analytical approach to determine the local scaling exponents of continuum growth models is proposed.
The method allows one to predict when a particular growth model will have anomalous properties
(e # aj,c) and to calculate the local exponents. Several continuum growth equations are examined as
examples.

PACS numbers: 64.60.Ht, 05.40.—a, 05.70.Ln, 81.10.Aj

Kinetic roughening of surfaces in nonequilibrium con-fluctuations in continuum growth models exhibiting
ditions has been a subject of great interest in the past feanomalous kinetic roughening. Our method allows one
years. This is mainly due to the many important applicato predict when a particular growth model is expected to
tions of the theory of surface growth including molecular-have anomalous propertiea # a),c) and, in principle,
beam epitaxy (MBE), fluid flow in porous media, and also to determine the local exponents. We illustrate the
fracture cracks among others [1]. Growth processes havaethod by studying several growth equations with and
very often been shown to exhibit scaling properties thatvithout anomalous scaling.
allow one to divide the models into universality classes We shall be interested here in continuum growth
characterized by the value of the critical exponents [1,2]models ind + 1 dimensions which dynamics is expected
Theglobal interface width in a system of total lateral size to be described by the Langevin-type equation
L, which is the root mean square of the fluctuations of oh
the surface height, scales according to the Family-Vicsek — = O(Vh) + n(x,1), 3
ansatz [3] as 9z

_ a/z 1/z where i(x, 1) is the height of the interface at substrate
_W(L’ 2 N /), (1) position x at time ¢. The actual form of the function
where the scaling functiofi(u) behaves as ®(Vh) defines a particular model [13]7(x, ?) is a noise
Flu) ~ {u“ if u<1, @ term uncorrelated in space and tie,(x, /)n(x’, ")) =
const ifu>1. 2DS&(x — x)&6(r — ).

The roughness exponent and the dynamic exponent The scaling properties of the local surface fluctuations

z characterize the universality class of the model undecan be investigated by computing either the height-height

study. The ratig8 = «/z is the time exponent. correlation functionG(1,1) = ([h(x + L1) — h(x,1)]?),
However, very recent numerical studies have revealedhere the average is calculated oversaloverline) and

a rich variety of interesting phenomena, which are poorlynoise (brackets), or tHecal width, w(l, r) = {([h(x,t) —

understood at present. In particular, it has been show),1?),)!/2, where(---), denotes an average overin

that many growth models [4-11] exhib&nomalous  windows of sizel. For growth processes in which an

roughening, i.e., a different scaling for the global andanomalous roughening takes place these functions scale

the local surface fluctuations. This leads to the existencas

of an independentocal roughness exponent,. that _ B 1
characterizes the local interface fluctuations on scales w(lst) ~yG(L1) = 1P f4l/177), 4)
| <« L and differs froma. with an anomalous scaling function [7—-9] given by

A general analytical method to determine anomalous G if < 1
exponents from the continuum growth equations is still Falu) ~ {Zonst IifZ -1 (5)

lacking. In particular, a dynamic renormalization-group
(RG) calculation in the Lai, Das Sarma, and Villain instead of Eq. (2). The standard self-affine Family-Vicsek
(LDV) nonlinear continuum model has had only limited scaling [3] is then recovered when = /..
success [12] because of the existence of nonperturbative It is important to note that anomalous scaling stems
infrared singularities that are inaccessible to the usual dyfrom the fact that the mean square local slope has a
namical RG analysis. Therefore, most efforts have beenontrivial dynamics. A standard (Family-Vicsek) self-
focused on determining the anomalous critical exponentsffine scaling of the local interface fluctuations, ie.;=
using simulation of discrete models or direct numericalai., implies that the square local sloge(! = a,t) =
solutions of the Langevin-type equations of growth. ({h(x + a,1) — h(x,1)]?), wherea is the lattice spacing,

In this Letter, we propose a new analytical approacthecomesG(a,t) ~ const very rapidly in time. One can
to determine the scaling exponents of the local surfacalso see that this constant must go to zeroaas 0.
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However, as can be easily seen from Egs. (4) and (5),
in growth models exhibiting anomalous scaling the local
slopes scale as

G(a,t) ~ 2%, (6)

wherethe exponent k = 8 — ajo./z > 0. Theexistence
of such a diverging mean local slope introduces a new
correlation length in the growth direction, which enters
the scaling of the local fluctuations of the height. There-
fore, in any growth model, the existence (or absence) of
anomalous scaling of the local height fluctuations can be
investigated by computing the mean local slope G(a, 1).
In the continuous limit, @ — 0, G(a, t) can be written as
Gl(a,t) = s(t)a?, where

s(t) = ((Vh)?). (7)
This corresponds to calculating the mean sguare loca
derivative of the interface height. In genera, this quantity
scales as a power law s(f) ~ 2. Negative values of
the exponent « will result in a normal Family-Vicsek
scaling of the loca fluctuations with the same roughness
exponent. On the contrary, for k > 0 the correlation
length s() divergesin time and becomes arelevant length
scale in the problem that changes the local scaling, as
discussed above. In this case, anomalous scaling with a
local roughness exponent

dloc = @ — ZK (8)
is expected to occur. Aswe will seein the following, this
simple observation allows us to find a general method to
compute anomalous critical exponents. Note also that the
exponent x corresponds to the anomalous time exponent
B+ in Refs. [6,8,9].

Now, let us see how the scaling behavior of the mean
local dlope s(r) can be obtained from the continuum
growth equation. By applying the operator V to both
sides of the growth equation (3) one gets to an equation of
motion for the local derivative Y (x,¢) = Vh of the form

Y 6D
PP 5YVY+Vn' 9
In general, this Langevin equation may contain nonlinear
terms that break the tranglational symmetry h — h + ¢
in the growth direction. This implies that the resulting
interface Y (x, £) may not be rough (a = 0).
The global width of the interface Y (x, ¢) is given by

Wy (1) = (Y(x,)2)!/* = (V)2 (10)

where (Vi) = 0 has been used. This leads to the general
result that s(r) = W2(t) and the exponent « of the
average local interface slope s(r) ~ 1>* is given by the
time exponent of the global width of the local derivative
Y(x,1),

Wy (t) ~ t*. (11

It then becomes clear that one could obtain the anomalous
exponents of the interface h(x,r) by finding the time
scaling behavior of the fluctuations of Y = Vh.

In the following we investigate the existence of anoma-
lous scaling in several continuum growth models. In the
examples that we analyze here, a Flory-type approach in-
troduced by Hentschel and Family [14] suffices to obtain
the exponent « from the corresponding Eq. (9) for every
model in good agreement with existing simulation results.
The Flory approach can be seen as a stability analysis
of the equation of motion (9) for the corresponding local
derivative Y (x, t) of the interface.

Kardar-Parisi-Zhang eguation.—The first system we
examine is the noise-driven interface growth model given
by the Kardar-Parisi-Zhang (KPZ) equation [15]

dh ) )

o vVeh + AVh) + n(x,1).
This equation was originally introduced to describe bal-
listic deposition growth far from equilibrium. In 1 + 1
dimensions the critical exponents @ = 1/2 and z = 3/2
can be calculated exactly [15]. On the basis of much nu-
merical work, it is well established that the KPZ equation
does not exhibit anomalous roughening. Let us see how
this result can be derived in dimension 1 + 1 by use of
our approach.

In this case, the growth equation for the local deriva
tive, Eq. (9), reads

%Y

W _ 0 Ly i (13)
ot dx? ox ox

in 1 + 1 dimensions. From this growth equation the
scaling behavior of the fluctuations of the interface Y (x, 7)
can be obtained. We find that the width scales as
Wy (1) ~ t~1/3, where the exponent can be obtained by
a Flory-type approach [14] as follows.

In the spirit of Ref. [14], we assume that at long times
t > t;, and averaged over length scales I, the typical
magnitude of the fluctuations in Y (x, ) scae as Y,, and
that these fluctuations last for times of the order #;,. The
idea now is to estimate the magnitude of the individual
terms. Basically for any equation such as Eg. (13)
to show time scaling each separate term, when coarse
grained over length scales I, must be of the same order of
magnitude or negligible. Only under these circumstances
can scaling behavior arise. The various terms in Eq. (13)
may be estimated as{|aY /ot|), ~ Y, /t;, {|0>Y /ox?|); ~
Y, /1%, {(10Y2/ax|); ~ Yi/I. As for the noise, one can
estimate its fluctuations on length scales I and time
scales 1; as (|am/ox|) ~ (1°¢;)~'/2 for smooth surfaces,
while for rough surfaces (|an/ox|) ~ (Y;1%t,)~"/% (see
Ref. [14] for details). Note that the correct scaling of the
noise term depends on the particular equation under study.

At sufficiently large length scales the nonlinear term
in Eqg. (13) will dominate the diffusion term, and, so,
equating the {|0Y /dt|); term with the nonlinear term we
obtain that a typical fluctuation scalesas Y, ~ [/r;. To
proceed further we now equate our estimate for the noise
fluctuation (Y;/2#;)~'/2 to the inertial term, which gives

(12)
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Y, ~ (1;/1%)'/3. Thus we can estimate that a fluctuation
of Y scaesintimeasY; ~ tfl/S

In the case of the KPZ equation in 1 + 1 dimen-
sions a negative exponent k = —1/5 is found indicat-
ing a standard scaling as expected. A similar Flory-type
computation also shows that, in fact, the KPZ model
exhibits a self-affine scaling in d + 1 dimensions and
k=—1/4 + d).

A particular case of the KPZ equation is the linear
interface growth model (A = 0), first studied by Edwards
and Wilkinson [16]. For this model Eq. (13) can be
solved exactly and we obtain the exponent x = —1/4,
as corresponds to a standard Family-Vicsek scaling.

Surface growth with conservation law.—The KPZ
equation does not conserve the total volume of the
interface. The conserved version of KPZ was studied by
Sun, Guo, and Grant (SGG) [17] and is given by

% = —KV*h + AVA(VA)? + n.(x,1), (14)
where

(ne(x, )n(x', 1)) = =2DV?8(x — x)8(t — 1). (15)

Here the exponents are exact in any dimension [17], in
particular, « = 1/3 and z = 11/3 for d = 1. We have
investigated the possibility of anomalous scaling in this
model in 1 + 1 dimensions. From the corresponding
equation for the local derivative Eg. (9) and the noise
fluctuations ~(13#,)~'/2, we obtain the scaling behavior
Wy (1) ~ =2 for thefluctuations of Y (x, 7). Thisresult
shows that the SGG equation has al'so a normal scaling of
the local fluctuations of the height.

Linear MBE model.—As a simple example of anoma:
lous roughening, we now consider the linear model for
MBE growth [18,19] given by

% = —KV*h + n(x,1). (16)
Despite its simplicity, this equation has played an impor-
tant role in the theory of MBE. The critical exponents
are easily calculated in any dimension, and, in particu-
lar, one has @« = 3/2 and z = 4 in dimension d = 1.
The model exhibits superrough interfaces (¢« > 1). This
leads to anomal ous (superrough) scaling [8,9]. In fact, nu-
merical simulations [8,9,18,19] of Eg. (16) showed that
the local scaling is given by Egs. (4) and (5) with a local
roughness exponent aj,. = 1.
In this case the growth equation for the local derivative,
Y *Y 9
E = _KW + a')’](x,l), (17)
is linear and can be easily solved. The Flory approach
now gives the exact exponent x. We can estimate the
curvature diffusion term as (|0*Y /ax*|); ~ Y;/I*, being
the estimate for the noise term {|on /x|y ~ (I3t)~'/2
in this case. Equating fluctuations of each of the two
terms on the right-hand side of Eq. (17) with the inertia
term, we obtain the scaling behavior Wy (1) ~ ¢'/8 for
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the width of the local interface derivative. The positive
value of the exponent « means that the local slope s(z)
becomes a relevant correlation length in the problem and
anomalous roughening is to be expected. The scaling
relation (8) gives us an exact determination of the local
roughness exponent «,. = 1 for this model in dimension
d = 1. Thisisin good agreement with existing numerical
results [8,18,19].

Random diffusion model.—So far we have been con-
sidering growth models in which the only source of ran-
domness is in the influx of particles on the surface. Let
us now consider the growth model

oh d

oh
- 5[ <x>5} F ooy, (19

where D(x) > 0 is a quenched columnar disorder with
no correlations. This random diffusion coefficient is
distributed according to P(D) ~ D™#* for D <1 and
P(D)=0 for D> 1. This model describes a fluid
interface advancing through a stratified porous medium
with long range correlations in the growth direction.

The random diffusion model was originally introduced
[6] to demonstrate that anomalous roughening is not due
to superroughening effects, but it can also take place in
models in which @ < 1. The critical exponents depend
on the disorder strength . and can be calculated exactly
[6], « =1/[20 — w)] and z = 2 — w)/(1 — ) for
0 < w < 1. This model exhibits anomalous roughening
with a loca roughness exponent aj,. = 1/2 that is
independent of the disorder [6].

The existence of anomalous roughening in this model
can be rederived by use of our approach as follows. The
growth equation for the local derivative

aY  9? 9

e @[D(X)Y] o n(x, 1) (19)
can be solved exactly to obtain the time scaling behavior
of Wy(r) ~ . Wefindthat k = u/[2(2 — u)]for0 <
m < 1, which givesus alocal roughness exponent a,. =
a — zk = 1/2 in agreement with earlier results [6].

Lai—Das Sarma-—Villain equation.—The last example

we study isthe LDV [20,21] equation for MBE growth,

% = —KV*h + AV2(Vh)? + n(x,1).  (20)
This equation is expected to describe the behavior of the
long-wavelength fluctuations of the interface height in
severa discrete models of MBE growth [5,7,11,21,22].
Note that this equation differs from the SGG equation
discussed above in the nonconserved character of the
noise in this case.

According to a dynamical RG analysis of Eq. (20) the
global exponentsa = (4 — d)/3andz = (8 + d)/3 are
expected to be exact to al loops. However, numeri-
cal simulations of the LDV equation and severa discrete
growth models in the same universality class have shown
that the model exhibits anomalous scaling with a loca
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roughness exponent aj,. = 0.7 [5,7,11] in 1 + 1 dimen-
sions. A perturbative dynamic RG approach to Eq. (20)
showed [12] the existence of a strong-coupling infrared
singularity that prevented one from obtaining the local
anomalous behavior by perturbative methods.

Again, the existence of anomalous scaling in this model
in 1 + 1 dimensions can be investigated by use of the
growth equation for the local derivative of the interface.
In this case EQ. (9) reads

aY *Y 3 s d

PP K Py + A e (Y?) + P n(x, ). (21)
A Flory approach can also be applied to this case
to determine the scaling of Wy ~ t*. As we did
for the KPZ equation, we can estimate the terms in
Eq. (21) as {|aY/atly ~ Y, /1, |9*Y /ax*]) ~ Y, /1%,
(03Y2/0x3|), ~ Y?/13, and the noise being
(on/oxl) ~ (Y;1%1;)7"2 as in the KPZ case. As
suming that the nonlinear term dominates the curvature
diffusion term at large scales, we obtain Wy ~ ¢!/11.

According to this the exponent x = 1/11 is positive
and, as a consequence, the LDV equation in 1 + 1
dimensions is expected to display anomalous roughening.
The local roughness exponent aj,. = 8/11 = 0.73 is
given by the scaling relation (8) with « = 1 and z = 3
ford = 1. Our estimate for a),. isin excellent agreement
with the numerical result ajo. = 0.73 £ 0.04 [5].

In summary, we have introduced a new method to cal-
culate the local roughness exponent in growth models ex-
hibiting anomalous kinetic roughening. We have shown
that a divergent dynamics of the mean square local deriva-
tive, s(r) ~ 2% with k > 0, isthe cause for an anomalous
roughening of the local surface fluctuations. The expo-
nent k can be obtained by studying the time scaling be-
havior of the fluctuations of the local derivative. The local
roughness exponent can then be obtained by use of a scal-
ing relation, Eq. (8). We have examined the existence of
anomalous roughening in several models. For the linear
models our results are exact. Nonlinear growth equations
were studied by a scaling approach, which gave resultsin
good agreement with existing simulations.

Finally, our findings indicate that a self-affine (a =
a1oc) Family-Vicsek scaling of the interface fluctuations
is the result of a fine balance among the relevant terms
in the growth equation. This balance can be altered by
including conservation laws or higher order nonlinear
terms resulting in a divergent behavior of the loca
derivatives s(r) and anomalous scaling.
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