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The dynamical interactions of dislocations existing on intersecting glide planes have been invest
using numerical simulations based on isotropic linear elastic theory. It is found that such disloca
either repel, attract and form growing junctions, or attract and form bound crossed states. W
of these occurs can be predicted from a surprisingly simple analysis of the initial configurations.
outcome is determined primarily by the angles which the dislocations initially make with the glide-p
intersection edge, and is largely independent of the initial distance between the dislocations, their
curvature, or ambient applied stresses. The results provide a rule for dealing with forest intera
within the context of large multiple-dislocation computations.
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Stress relaxation and plastic flow in crystals occur pr
marily via the motion of dislocation lines, which generat
atomic slippage of the crystal at the surfaces traversed
the moving dislocations. Many phenomena such as fra
ture, patterning and work hardening in metals, and stre
relaxation in semiconductor devices reflect the dynamic
behavior of dislocations on the mesoscopic scale, and
terest in modeling such behavior is growing rapidly.

The mesoscale approach (with suitable atomistic inpu
is well suited for exploring such problems as work hard
ening, where a large tangle of dislocations interacts in
complicated three-dimensional manner, while at the sam
time the typical spacing between dislocations is muc
larger than the core size. The detailed exploration of su
problems requires numerical simulations, and there is
tense current activity aimed at developing programs whi
incorporate the manifold mechanisms that govern disl
cation behavior and interactions [1–8]. Our particula
entrant in this field is thePARANOID code [9], a fully par-
allelized and highly adaptive program, designed for larg
calculations but also capable of resolving the behavior
individual dislocations down to nanometer scales. Th
latter feature permits us to examine certain key issu
which must be resolved before large mesoscale simu
tions can be considered practical.

Dislocation-tangle simulations tend to be numericall
intensive in any case. Greatly exacerbating this negat
aspect, however, is the necessity of dealing with so-call
forest interactions. By this is meant the crossing of dislo-
cation lines moving on intersecting glide planes and ofte
having different Burgers vectors. Such events occur on
occasionally as the tangle evolves, but are of the high
importance because they lead to reconnections, the f
mation of jogs, junctions, and locks, and other phenom
ena that drastically alter the tangle dynamics. Becau
of the tensor nature of the interaction fields and the no
linear character of the line dynamics, a typical forest in
teraction follows a complicated development to the fin
stage where the cores touch, atomistic calculations b
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come appropriate, and reconnection, junction formatio
or jog creation occurs. Our simulations can indeed follo
this development down to nanometer scales, but to do
requires remeshing of the node density down to a 0.1 n
spacing and a concomitant reduction in the length of t
time steps. Thus, to fully resolve all such interactions du
ing a tangle simulation multiplies the computational co
by several orders of magnitude and is impractical for th
systems of interest.

The consensus idea for dealing with this problem is
apply “rules” which let one jump directly from the initial
configuration at which the lines begin to interact strong
to a final configuration ( junction, jogs, etc.). This ide
presupposes that there is a natural separation of time sc
in the internal dynamics of a dislocation tangle. Typically
such dislocations move around with velocities determin
by their curvature and by the applied stresses. Their eff
on each other is minor, except perhaps in a mean-fi
sense. If two cores happen to approach each other
within a critical distance, however, their mutual interactio
can take over and initiate an attractive instability whic
leads to a new configuration in a relatively short time.
is these events which one seeks to bypass computation
by the application of rules. If such a rule exists and tw
lines start to become unstable, a decision can be m
based on their configuration and the lines placed into t
desired outcome state. The subsequent behavior of th
new configurations will again occur on relatively slow
time scales—it can now be modeled in simplified term
allowing for the growth and shrinkage of junctions, and th
possible creation of jogs.

Although schematic versions of forest-interaction rule
have been implemented recently [2,10], it has been
from clear that a physically realistic, useful set of suc
rules, in fact, exists. First, we shall see that even in t
case of two initially straight lines, the interaction is compl
cated and seemingly unpredictable, the dislocations of
twisting around substantially to find the final configuratio
that they favor. Second, there is a large parameter spac
© 1999 The American Physical Society
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initial angles and separations to consider. Third, actual for-
est interactions are likely to involve curved lines, moving
under large external stresses, and responding (in the case of
bcc metals) with highly anisotropic mobilities, all factors
which can affect their evolution in a major way. Finally,
there are many distinct pairs of interacting slip systems,
each of which may act somewhat differently. Indeed, it
seems at first sight that the enumeration of rules becomes
impossibly complicated as soon as one tries to implement
it in a physically well-founded way.

In order to address this issue, we have performed a va-
riety of forest-interaction calculations in which we follow
the interactions down to the point where the cores touch.
Our method of simulating dislocation dynamics has been
described in Ref. [8]. Here, we first consider two straight
dislocation lines lying on intersecting glide planes and
having different Burgers vectors. No external stresses
are applied, and the dislocations are assumed to respond
with an isotropic mobility to the forces that they feel.
Even for this highly simplified situation the complete pa-
rameter space of initial conditions is complicated, and
we have found the following prescription to be particu-
larly suitable for sorting things out. First, place the two
lines on the edge formed by the intersecting glide planes
and pick a common point P on this edge. Rotate each
line about P on its own glide plane by an angle f1 and
f2, respectively, and then displace the lines a distance d1
and d2, respectively, in the direction perpendicular to the
rotated line [Fig. 1(a)]. The result for any particular for-
est interaction described in this way by a particular initial
condition, f1, f2, d1, d2, was found to be sensitive to f1
and f2, but not to d1 and d2. The latter could generally
be varied from 620 to 6400 nm without much effect, and

FIG. 1. Geometric conventions: (a) Each dislocation has an
initial angle f with respect to the glide-plane edge, taken in
the direction given by the cross product of normal with edge
vector. The initial angles f1, f2 relate to the calculated final
state as shown by the symbols in Fig. 3. (b) Hypothetical
junction construction used with Eq. (1) to predict the final state.
Although dislocations may twist to new orientations during
junction formation, analysis of this configuration successfully
separates junction-forming and nonforming initial conditions
via the contours shown in Fig. 3.
this dependence will be suppressed during the following
discussion.

For certain ranges of f1, f2, the two lines shown in
Fig. 1(a) have a repulsive interaction. In the absence of
external stresses or line-curvature effects, the dislocations
then drift apart in an uninteresting manner. When f1,
f2 are such that the interaction is attractive, however,
the lines come together to form a bound state. Often,
this bound state takes the expected form of a junction
[Figs. 2(a) and 2(b)] in which the two dislocations com-
bine and zip up until the process is halted by extraneous
factors such as pinning. In more cases than not, however,
our calculations indicate that the dislocations end up in
a crossed state [Figs. 2(c) and 2(d)], which is bound but
which does not zip up to form a junction. The existence
of these stable states has little to do with core interac-
tions, the crosses remaining bound even if the cores of
dislocations are moved freely through each other. Since
discussions of forest interactions in the literature have
focused exclusively on junctions as the primary actors
in dislocation-tangle dynamics, the prevalence of these
crosses seems very surprising, and their possible signifi-
cance deserves further study.

We now consider the question of predicting the out-
come of a forest interaction. Figure 3(a) shows the results
of fully resolved runs for a particular pair of bcc slip sys-
tems. Each point in the figure corresponds to a complete
run involving two initially straight lines oriented at angles
f1, f2 with respect to the glide-plane edge as illustrated

FIG. 2. Many pairs of attracting dislocations, such as (a) in
this figure, evolve to resemble textbook pictures of straight-
armed junctions. Other pairs link in a simple cross shape,
but do not zip together to form a junction [Fig. 1(c)]. In
other circumstances, both zipping and nonzipping cases show
a substantial amount of local twisting [e.g., (b) and (d), which
have been magnified by a factor of 10]. These simulations
used the slip system pair of Fig. 3(a), with isotropic mobility
and no external stress. Initial configurations were as shown in
Fig. 1(a), with angles f1 � 2150±, f2 � 2150±; f1 � 180±,
f2 � 2120±; f1 � 90±, f2 � 2120±; f1 � 290±, f2 �
2120±.
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FIG. 3. (a) and (b) show the behavior of two initially straight
dislocations under zero external stress. Filled circles represent
the formation of well-defined junctions, crosses indicate bound
crossed states, and hollow circles show borderline cases which
zipped up less than a nanometer during the simulation period.
Empty spaces indicate repulsive dislocations in (a) and (b).
(a) shows the bcc pair �01̄1� 1

2 �11̄1̄� and �1̄01� 1
2 �111�, while (b)

shows the bcc pair �110� 1
2 �11̄1̄� and �1̄01� 1

2 �111�. (c) involves
the same pair of slip systems as (a), but here one of the
dislocations starts out as a circular loop of radius 30–100 nm.
(d) shows results for the same slip systems as (a), but now
the calculations are carried out with the addition of a large
(690 MPa) uniaxial stress.

in Fig. 1(a). We observe that while all attractive interac-
tions lead to bound states, true junction formation occurs
only in compact, localized regions of f1, f2 parameter
space. The interesting question is whether this outcome
can be predicted without doing such detailed calculations.

Figure 1(b) illustrates the textbook way of viewing
a junction [11]. To analyze whether such an idealized
junction is energetically favored (i.e., wants to grow), one
considers the energy change

f � 2d�E1 1 E2 1 E3��dx (1)

due to a virtual displacement dx of one of the junction
ends along the glide-plane edge. In the usual simple
application of this argument to an isotropic system, one
4576
uses the energy per unit length

E �
mb2

4p�1 2 n�
�1 2 n cos2b� ln�R�a� (2)

for each arm to determine its contribution to the energy
balance. Here, m is the shear modulus, n is Poisson’s
ration, �b is the particular Burgers vector �b1, �b2, or
�b1 1 �b2 appropriate to the arm, b is the angle between
this Burgers vector and the arm direction, and ln�R�a� is
the usual phenomenological core cutoff term. As noted
by Herring [12], dE�dx involves not only line tension
contributions from changes in the arm lengths, but also
“ torque” terms arising from changes in the directions of
arms one and two. The interaction energy between the
various branches is ignored, and indeed one might guess
that such interactions will significantly alter the idealized
shape usually shown in the textbooks.

At first sight, this simple model seems to have little
relation to a junction formed on the fly where, as
shown in Figs. 2(b) and 2(d), the lines will often twist
around quite dramatically to make (or avoid making) a
junction. In particular, the final orientations of the arms
near the junction are generally quite different from their
starting orientations. Remarkably, however, we find that
Eqs. (1) and (2) applied to the idealized junction shown in
Fig. 1(b) are sufficient to predict the outcome of a forest
interaction, provided that the initial orientations f1, f2
of the interacting lines are used to specify the orientations
of the “ trial junction” arms, as indicated in Fig. 1. The
contours drawn in Fig. 3(a) show the regions of f1, f2
space where the idealized trial junction is energetically
favored, and indeed our detailed calculations show that
all of the initial conditions lying within the junction
contour lead to the eventual formation and growth of a
stable junction. For other values of f1, f2, attractive
interactions lead to the formation of crossed states.

These results appear to be quite general. Figure 3(b)
shows a study done for a different pair of bcc slip
systems. Again, the analysis based on Eqs. (1) and (2)
works remarkably well. We note that although Figs. 3(a)
and 3(b) are similar, they differ significantly in detail,
indicating that the analysis yields important quantitative
information. Results similar to Figs. 3(a) and 3(b) are
obtained for other interacting bcc slip systems, as well as
for fcc systems.

Predictions based on the analysis we have described
are found to be remarkably robust. It has already been
pointed out that the observed (computed) final configu-
rations are quite insensitive to the signs and magnitudes
of d1 and d2. However, in a real system of interact-
ing dislocations, forest interactions will usually involve
a host of other complications. Typically, the dislocations
may experience large external stresses, they may be highly
curved when they encounter each other, and their response
to the forces they experience may be highly anisotropic
[13]. Each of these factors has a major influence on the



VOLUME 83, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 29 NOVEMBER 1999
dislocation motion. Nevertheless, we find that they have
relatively little effect on the final outcome of the interac-
tion. Figures 3(c) and 3(d) show the effects of line cur-
vature and stress for the slip systems shown in Fig. 3(a).
Even under situations where the dynamical behavior is
disturbed greatly by these complications, or where it be-
comes rather difficult [14] to define the asymptotic ini-
tial conditions f1, f2, the predictive power of Eqs. (1)
and (2) is still quite remarkable. Such deviations from
Fig. 3(a) as can be observed in Figs. 3(c) and 3(d) seem
largely to arise from the fact that when the initial curva-
tures or the applied stresses are large, the motion of the
dislocations far away from the interacting region speeds
up greatly. The asymptotic conditions then change sig-
nificantly during the time it takes the junction or crossed
state to form, and the separation of time scales discussed
earlier begins to break down [15].

We conclude that the application of Eqs. (1) and (2) to
the initial configuration largely suffices to predict whether
any particular forest interaction will lead to junction or
cross formation. This implies that it is the asymptotic di-
rections that the junction arms would have in the absence
of interactions, and not the orientations which they actually
assume very near the junction, which determine junction
stability. The results are surprisingly robust, depending
only marginally on initial line separation, line curvatures,
ambient stresses, and mobility anisotropy. The analysis
we have outlined is trivial to implement computationally:
When two dislocation lines approach to where their mu-
tual interaction becomes significant, a subroutine is ac-
cessed which constructs the idealized junction and applies
Eqs. (1) and (2) to see whether it wants to grow or shrink.
If the idealized junction is stable (growing), the program
reconstructs the dislocations into a junction configuration.
If not, it generates a crossed configuration. Thus the sub-
routine plays the role of the desired rule and is currently
being implemented as a part of our large-scale dislocation-
tangle simulations.

A second important outcome of the work presented here
is the observation that the majority of attractive interactions
lead not to junctions but to crossed states. In addition,
we have found that, if repulsively interacting dislocations
are forced together by an applied stress, crossed states,
not junctions, are formed [Fig. 3(d)]. Some, but not
all, of both the crosses and the junctions persisted for
significant periods of time under the 690 MPa external
stress used for the runs in Fig. 3(d), an observation
which indicates that the topological constraints pro-
duced by crosses may be of comparable strength to
those of many junctions. Although further calcula-
tions, perhaps on the atomistic level, will be required
to explore this issue, it appears that the crossed states
configurations may also represent important obstacles
to motion in the dynamics of interacting dislocations.
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