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Analog of the Stokes-Einstein Relation for Bulk Viscosity
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An analog of the Stokes-Einstein relation is derived for the bulk viscosity of simple fluids by means
of statistical mechanics. The formula is used to calculate the bulk viscosity with the self-diffusion
coefficient available either from experiment or from numerical simulations. The results are in good
agreement with experiment with regard to the density and temperature dependence.

PACS numbers: 66.20.+d
Of all transport coefficients of fluids, the bulk viscosity
probably is the least studied experimentally and theoreti-
cally despite its importance for accounting for ultrasonic
wave absorption and dispersion. On the theoretical side,
the kinetic theory developed by Rice and Allnatt [1] pro-
vides a practicable method of computation and received
some experimental attention [2–7] in the 1960s, but still
remains to be further studied from the theoretical stand-
point. There are some other kinetic theory methods [8,9],
but they have not been followed up for comparison with
experiment to a noticeable extent except for the modified
Enskog theory result [10], which unfortunately holds for
hard spheres only. There are some results obtained for
bulk viscosity by molecular dynamics simulation meth-
ods [11–13] performed on the basis of the linear response
theory formula. Recently, a formal expression for the
bulk viscosity of a simple fluid has been also obtained
on the basis of the generalized Boltzmann equation [14],
but, since the formula involves a many-particle collision
bracket integral requiring the solution of a many-particle
collision problem, it still awaits for theoretical methods to
compute it in an adequate accuracy.

In this Letter, we present a method of calculating the
bulk viscosity of a simple liquid from the information
available for the self-diffusion coefficient, equilibrium
pair correlation function, and other attributes of the liquid.
In this method, recognizing the significance of density
variation for transport properties and using the method
of statistical mechanics, we obtain a relation of the bulk
viscosity to the self-diffusion coefficient, which is in fact
rather akin to the well-known Stokes-Einstein relation
[15] between the shear viscosity and the self-diffusion
coefficient, and the present result may be regarded as
a bulk viscosity analog of the Stokes-Einstein relation.
The present method starts with the stress tensor as in
the method used by Kirkwood, Buff, and Green [16], by
which shear and bulk viscosities are calculated, but differs
from theirs in the treatment of the stress tensor and in the
result obtained for the bulk viscosity. In fact, the zero
density limit of their bulk viscosity result is incorrect
since the bulk viscosity of a dilute monatomic gas is
equal to zero, as is well established experimentally and
theoretically.
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The bulk viscosity is defined by the linear thermody-
namic force-flux relation [14,17]:

D � 2hb= ? u , (1)

where the excess normal stress D is defined by D �
1
3 TrP 2 p, with P denoting the stress tensor of the
fluid and p the hydrostatic pressure; u is the velocity
of the fluid particle; hb is the bulk viscosity. Equation
(1) indicates that, if the temperature is kept fixed, the
excess normal stress is driven by compression/dilatation
of the fluid. In the kinetic theory of fluids [1,9,14],
the bulk viscosity coefficient hb is given in terms of a
collision bracket integral or a time correlation function.
The present method does not require them to evaluate hb .

Suppose, for example, a sound wave propagates
through the fluid. The response to the compressional
effects by the system will result in a local volume change
of the fluid, which is associated with the bulk viscosity.
Here we propose to exploit this density variation in the
fluid to calculate the bulk viscosity.

A longitudinal sound wave passing through a fluid pe-
riodically compresses the fluid and thus creates a density
variation in the direction of the wave. We will designate
the direction of the wave propagation as the z direction
in the Cartesian coordinate system. The z (longitudinal)
component of the normal stress Pzz then is equal to the
hydrostatic pressure p: PL � Pzz � p. Since the density
does not vary in the transversal direction, the transver-
sal components of the normal stress Pxx and Pyy are not
the same as the longitudinal component Pzz . However,
by symmetry Pxx � Pyy � PT . Therefore the density
variation induces a nonvanishing normal stress difference
N � PT 2 PL fi 0, which now is related to D by the
equation D � 2

3 N � 2
3 �PT 2 PL�. This indicates that

the normal stress difference is associated with the bulk
viscosity in this situation.

The self-diffusion is driven by a density variation in
space. It is described by the relation [18]

ru � 2D=r , (2)

where D is the self-diffusion coefficient, which depends
on density as well as temperature. Equation (2) is Fick’s
law for self-diffusion. According to the result by the
© 1999 The American Physical Society
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kinetic theory of fluids, the self-diffusion coefficient [17]
depends on density as D � D0�r, where D0 may be
regarded as a constant independent of r to the lowest order
approximation. However, D0 may depend on temperature.
To be more precise, D0 is generally represented in a series
in r, but only the leading term is found to be sufficient for
the discussion. Since the density does not change in the
transversal direction in the present problem, differentiation
of Eq. (2) with respect to z yields
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where the second derivative of r, being small, may be
neglected. Upon substitution of Eq. (3) into Eq. (1), there
follows the equation

PT 2 PL � 2
3hbD

r2

µ
≠r

≠z

∂2

. (4)

The stress tensor P can be calculated in terms of
intermolecular forces and the dynamic pair distribution
function for a nonequilibrium simple fluid by using the
Irving-Kirkwood method [19]. It can be written in the
form

P�r, t� �
Z

dp mCCf�p, r, t�

2
1
2

Z 1

0
dl

Z
dr12

r12r12

r12

3 y0�r12�r�2��r 2 lr12, r 1 �1 2 l�r12, t� ,

(5)
where f�p, r, t� is the singlet distribution function of
momentum p, position r at time t, m is the mass,
C � p�m 2 u is the peculiar velocity, y�r12� is the
intermolecular potential energy, r12 � r2 2 r1, y0�r12� �
≠y�r12��≠r12, and r�2� is the dynamic pair correlation
function (PCF). At equilibrium, the formula becomes
time independent, because the PCF becomes independent
of time. The first term (kinetic contribution to P) on the
right of Eq. (5) does not contribute to PN 2 PT , and, if
the density gradient is small, it is possible to show that
PN 2 PT to the lowest order approximation is given in
terms of the equilibrium PCF:

PN 2 PT �
1
4

Z 1

0
dl

Z
dr12

µ
r12 2

3z2
12

r12

∂
y0�r12�

3 r�2��r12, z1 2 lz12, z1 1 �1 2 l�z12� .

(6)

Since the fluid is locally nonuniform, the PCF may be
expressed as

r�2��r1, r2� � r�z1 2 lz12�r�z1 1 �1 2 l�z12�

3 g�r12, z1 2 lz12, z1 1 �1 2 l�z12� ,

(7)

where r1 � r 2 lr12, r2 � r 1 �1 2 l�r12. By ex-
panding the density up to the first order in density deriva-
tive, we find
r�z1 2 lz12�r�z1 1 �1 2 l�z12� � r2�z1� 1 �1 2 2l�z12r�z1�
≠r

≠z1
2 l�1 2 l�z2

12

µ
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. (8)
To the lowest order approximation, the PCF g�r� may be
approximated by the one evaluated at a mean density r

suitably chosen. If the density variation has a range 2j,
then the expansion for r�z� is confined to 2j # z12 # j.
The range 2j may depend on temperature T ; it may be
larger than the range rmax of intermolecular forces near the
critical point where the density fluctuation is long ranged,
but may be quite small and on the order of the size of one
or two molecules if T is sufficiently away from the critical
temperature Tc. This finite range of density variation
will be taken care of by inserting the factor z �jz12j 2 j�,
where z �x� � 1 for x , 0 and 0 for x . 0. If T is near
Tc, the range of density fluctuation is long and expected
to be larger than rmax, that is, j $ rmax, and j # rmax if
T is sufficiently away from Tc.

When the expansion (8) is substituted into Eq. (6) and
the integration is performed over l, the first two terms on
the right of Eq. (8) vanish. Taking integration over the
relative coordinates, we obtain

�PT 2 PL� �z� � 2v�z, T �
µ
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� 2
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(9)

Here, the factor v�z, T � is given by

v�z, T � �
2p

45

Z `

0
dr r5y0�r12�g�r12, r�z �jz12j 2 j� .

(10)

This factor v depends on both density and temperature
because g depends on both. The second equality of
Eq. (9) follows from Eq. (4) for PT 2 PL. Therefore
there follows the expression

hb�z, T � �
r2v�z, T �
3D�z, T �

. (11)
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By taking average of hb over the range 2j of density
fluctuations, we obtain

�hb�z, T �	 �
1

2j

Z j

2j
dz

r2�z�v�z, T �
3D�z, T �

. (12)

The integrand of this integral depends on z through r�z�.
By the mean value theorem �hb	 � hb�rj�, where rj

is the density value within the range of 2j, in which
the density varies between the uniform bulk value and a
maximum. Since this difference in density, however, is
small and the value of rj should be practically equal to
the bulk density value, we take rj 
 r and thus obtain
the bulk viscosity:

hb�r, T � �
r2v�r, T �
3D�r, T �

. (13)

It is a bulk viscosity analog of the Stokes-Einstein relation
[15] relating the shear viscosity to D. We will test this
relation against experimental data.

The range of density variation j varies with tempera-
ture and, at the minimum, can be of the same order of
magnitude as the size of the first coordination shell of the
liquid, that is, roughly the size of the cavity around a par-
ticle, not the whole intermolecular force range. In this
case, the integrals in Eq. (6) have a cutoff well inside rmax,
and this makes the value of the integral sensitive to the
value of j chosen because the pair correlation function os-
cillates. To adjust the value of v�r, T �, it was found eas-
ier to simply replace the cutoff factor z �jz12j 2 j� with a
numerical factor a. Thus, we write the factor v�r, T � in
the form

v�r, T � � a
2p

45

Z `

0
dr r5y0�r�g�r , r, T � . (14)

It is found that a , 1 when j # rmax, whereas a � 1
when j $ rmax.

We have calculated the bulk viscosity of liquid argon at
temperatures close to the critical point or higher and also
in the neighborhood of the triple point by using formula
(13) with the D values available from the literature.
In both cases, the Lennard-Jones potential is employed
for the potential function y�r� � 4e��s�r�12 2 �s�r�6�,
where the well depth e is taken to be e�kB � 119.8 K,
kB is the Boltzmann constant, and s � 3.405 Å. The
equilibrium PCF is obtained from the Percus-Yevick
integral equation, which was numerically solved.

In the region of temperature near or beyond the critical
point �T $ 130 K�, the range of density fluctuations 2j

is assumed to be comparable to or larger than rmax.
Thus a � 1 is taken in the formula (14) to be used
for computing the bulk viscosity. Therefore in this case
there is no adjustable parameter other than the potential
parameters which are taken with the values used in
the literature. The numerical results so calculated with
Eqs. (13) and (14) are compared with the experimental
4568
values reported in the literature in Fig. 1. For this
calculation, we have used the values of D by using a
formula obtained by fitting the experimental values of
Naghizadeh and Rice [20] to an analytical form. We
have also used the formula for D proposed by Heyes [21]
who obtained it by fitting his simulation data [Eq. (4) of
Ref. [21]]. In Fig. 1(a), the temperature dependence of
the bulk viscosity is presented for argon around the critical
point. The solid curve in Fig. 1(a) is the prediction with
the values of the experimental D reported in Ref. [20],
and the broken curve is the prediction with D obtained
from the Heyes formula [21]. The filled circles are the
experimental values reported in Ref. [3]. In Fig. 1(b), the
density dependence of the bulk viscosity is presented at
T � 234.5 K. It is the only temperature for the case of
j $ rmax for which the experimental density dependence
is available. The solid line is the prediction by the
present theory, whereas the double concentric circles are
the experimental values in Ref. [4]. The broken curve is
the prediction with the values of D given by the Heyes
formula. It is remarkable that Eq. (13) is in qualitative
and quantitative agreement with experiment with a � 1,
i.e., without an adjustable parameter, in this case.

In the neighborhood of the triple point, the range of
density fluctuations was found to be much less than the
intermolecular force range. We found the value of j is in
the neighborhood of 2s, which corresponds to a � 0.21.
With this value of a inserted in Eq. (14) for v�r, T �, the
bulk viscosities are calculated from Eq. (13). In Fig. 2(a),
the temperature dependence of hb at r � 1.408 g�cm3

FIG. 1. (a) hb vs temperature at r � 1.062 g�cm3 for argon
near the critical temperature. Solid curve: hb calculated with
DNR (D calculated from a formula fitted to the Naghizadeh-
Rice data [20]). Broken curve: hb calculated with the Heyes
formula [21] for D. (b) hb vs density at T � 234 K for argon.
Solid curve: the present theory; double concentric circles:
experimental data in Ref. [4]. The values of D are calculated
from the formula for DNR. a � 1 for the theoretical hb in the
present comparison.
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FIG. 2. (a) hb vs temperature at r � 1.408 g�cm3 for argon
near the triple point. Solid circles: the experimental values in
Ref. [3]; solid curve: the present theory with D computed from
DNR. (b) hb vs density at T � 90 K for argon computed with
DNR. The symbols are � (Ref. [7]), 3 (Ref. [2]), � (Ref. [6]),
and � (Ref. [3]). a � 0.21 for the theoretical hb .

is presented in comparison with the experimental values
(closed circles) reported in Ref. [3]. In Fig. 2(b), the
density dependence of hb at T � 90 K is presented in
comparison with experimental data reported in Ref. [7]
(asterisks), Ref. [2] (crosses), Ref. [6] (open circles), and
Ref. [3] (closed circles). For both sets of hb values
calculated, we have used the D values obtained from the
formula fitted to the data of D reported in Ref. [20]. Since
the Heyes formula for D is less satisfactory at high r and
low T , it was not used for the purpose of comparison made
in Figs. 2(a) and 2(b). With a single parameter value of
a, Eq. (13) predicts hb in good agreement with experiment
with regard to the r and T dependence.

We have not made comparison with the molecular dy-
namics (MD) simulation results [13], which have been
obtained from the Kubo formula, since, when compared
with experiments, they are off the experimental values by
14%-140% according to the values reported by Borgelt
et al. [13]. Analysis [12] of the MD simulations men-
tioned shows that they suffer from the presence of a long-
time tail in the autocorrelation function, which seems to
make accurate evaluation of hb rather difficult. There-
fore the present theoretical result raises a new hope for
studying bulk viscosity, a rather difficult quantity to com-
pute in a good accuracy.

In conclusion, in this Letter we have presented an ana-
log of the Stokes-Einstein relation for the bulk viscosity
of a simple fluid, which is derived by means of statistical
mechanics. The formula predicts the bulk viscosity in the
temperature range above 130 K in agreement with experi-
ment without an adjustable parameter. As the temperature
approaches the triple point, a cutoff parameter is required,
but with a single choice of parameter a multiplying the
integral for v�r, T � instead of the cutoff parameters, the
bulk viscosity computed by the present theory agrees with
experiment with regard to the density and temperature
dependence. Therefore the bulk viscosity analog of the
Stokes-Einstein relation presented appears to be of prac-
tical utility for calculating the bulk viscosity of simple
fluids, because it is so simple.
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