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Depletion Forces near Curved Surfaces
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Based on density functional theory the influence of curvature on the depletion potential of a si
big hard sphere immersed in a fluid of small hard spheres with packing fractionhs either inside or
outside of a hard spherical cavity of radiusRc is calculated. The relevant features of this potential ar
analyzed as a function ofhs and Rc. There is a very slow convergence towards the flat wall limi
Rc ! `. Our results allow us to discuss the strength of depletion forces acting near membranes
in normal and lateral directions and to make contact with recent experimental results.
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Many biological processes are controlled by th
interactions of macromolecules with cell membrane
Besides highly specific interactions of steric and chemic
nature there are also entropic force fields which a
omnipresent but whose actions depend only on gross ge
metrical features. These so-called depletion forces ar
because both the membranes and the macromolecu
generate excluded volumes for the small particles formin
the solvent. Although these forces have been discuss
for biological systems for many years [1], the simulta
neous presence of many other forces severely imped
the precise analysis of depletion forces in such system
Therefore it is highly welcome that dissolved colloida
particles can be tailored such that they resemble close
the effective model of monodispersed hard spher
confined by hard walls [2]. This allows one to study
the depletion forcesexclusively and to compare them
quantitatively with theoretical results. Once a satisfactor
level of understanding has been reached for these mo
systems one can apply with confidence this knowledge
the much more complex biological systems. Moreove
in colloidal suspensions themselves depletion forces c
be exploited to organize self-assembled structures [3
This dedicated use requires a detailed knowledge of t
mechanisms of depletion forces, too.

Along these lines in recent years there has bee
significant progress in understanding the depletion forc
between two big spheres and between a single big sph
and a flat wall based on experiments [4–9], analyt
results [10–14], and simulations [15]. A generic featur
of membranes is, however, that they are not flat. Th
variation of the local curvature leads to a new quality o
the depletion forces in that they are no longer directe
only normal to the surface, as for a flat wall or a
wall with constant curvature, but that there is also
lateral component which promotes transport along th
membrane. So far there are no systematic theoretic
studies available which accurately predict this importan
curvature dependence of the depletion forces. Bas
on the quantitatively reliable density functional theory
developed by Rosenfeld [16] we compute the depletio
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potential for a big sphere of radiusRb either inside or
outside of a spherical cavity with radiusRc, filled with
a solvent of hard spheres of radiusRs, as a function of
Rc, and of the packing fraction of the small sphereshs

defined as the fraction of the total volume occupied by t
small spheres [17]. For further details of our approach
refer to Ref. [14]. This enables us to make contact w
a recent experiment in which the curvature depende
of depletion forces has been investigated by monitori
colloidal particles enclosed in vesicles [18].

Figure 1 shows our results for the depletion potent
W�r; Rc� in units of kBT � b21 inside and outside of a
hard spherical cavity centered atr � 0. HereW�r; Rc�
is the difference of the grand canonical free energies
the hard sphere solvent in the presence and absence
spectively, of a big hard sphere whose center is fixed
a distancer from the center of the cavity. The choic
of the parameters corresponds to those of the experim
in Ref. [18]. The solid line denotes the actual depletio
potential compared with its so-called Asakura-Oosawa a
proximation (AOa) [19] (dotted line) which is valid only
for such small values ofhs that the solvent can be treate
as an ideal gas and which is determined by the over
of the excluded volumes around the big sphere and
hard wall. The AOa, which has been used to interp
the experimental data in Ref. [18], satisfactorily predic
the valueWc of the depletion potential at contact and it
derivation with respect toRc, but otherwise it fails con-
siderably. WhereasWAOa�r; Rc� is purely attractive and
vanishes forr + Rc 7 Rb 7 2Rs, the actual potential is
both attractive and repulsive with the wavelength of th
oscillations approximately given by2Rs. The correlation
effects of the solvent generate the potential barrierDWr

(see Fig. 1) which is completely missing within the AOa
and they increase the range of the potential significan
beyond the AOa range of2Rs. The presence of this po-
tential barrier has very pronounced repercussions for
diffusion dynamics of the big particle. The timet re-
quired to overcome a potential barrierDE is proportional
to exp�bDE�. Therefore, withDE � DWr , for the big
sphere it takes aboute2.5 � 12 times longer to reach the
© 1999 The American Physical Society
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FIG. 1. Depletion potential W �r; Rc� inside and outside of a
spherical cavity with radius Rc � 40Rs (full vertical line). The
radius of the big sphere is Rb � 5.7Rs and the packing fraction
of the hard sphere solvent (radius Rs) is hs � 0.3. Because
of the hard core interactions the center of the big sphere
cannot enter the space indicated by the dashed lines. The solid
line is obtained from density functional theory, whereas the
dotted line corresponds to the Asakura-Oosawa approximation
which is valid for small values of hs and exact in the limit
hs ! 0. Wc , 0, DWr . 0, and DWe � 2Wc 1 DWr . 0
denote the depletion potential at contact with the wall and the
potential barriers for reaching the wall and escaping from it,
respectively. The inset shows the different geometry of the
(shaded) overlap of excluded volumes of a big sphere (hatched)
inside and outside of a spherical cavity (hatched). (For reasons
of clarity the schematic drawings correspond to Rb � 0.7Rs
and Rc � 8.6Rs.)

wall from the center of the cavity or to escape from the
wall as compared with the time estimated from the AOa
(see Fig. 1). This difference still awaits experimental con-
firmation. For larger packing fractions hs this difference
becomes even larger. Thus the value Wc � DWr 2 DWe

of the depletion potential at contact can be obtained from
the ratio of rates of escaping from the wall and reaching
it, respectively. Taking into account only the former one,
as suggested by the AOa, would be misleading. The over-
all structure of the depletion potential outside of the cavity
is similar to the one inside, but its amplitude is reduced
(Fig. 1). This is in line with the trend predicted by the
AOa which expresses the fact that the overlap between
the excluded volumes around a big sphere and the wall is
larger inside the spherical cavity than outside. This geo-
metrical difference between the excluded overlap volume
inside and outside of the cavity is schematically drawn as
the inset in Fig. 1. In the inset the boundaries of the ex-
cluded volumes around the big sphere and the cavity wall
are indicated by dashed lines and the overlap of excluded
volumes is shaded.

In Figs. 2 and 3 we discuss as a function of the
packing fraction hs the relevance of the cavity curvature
outside
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FIG. 2. Depletion potential at contact bWc (see Fig. 1) as a
function of the cavity curvature �Rc�Rs�21 for three packing
fractions hs outside (upper curves) and inside (lower curves) of
the cavity with Rb � 5Rs.

for the depletion potential relative to the case of a planar
wall, i.e., Rc ! ` by focusing on the potential at contact
Wc and the escape potential barrier DWe, respectively.
As expected in the limit Rc ! ` both quantities reach
a common value for the outside and inside potentials.
These common values are in very good agreement with
simulation data for the planar wall [15]. For all values
of Rc the absolute values of the potential parameters
inside are larger than outside. They increase stronger
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FIG. 3. Escape potential barrier bDWe for a big sphere with
radius Rb � 5Rs inside (upper curves) and outside (lower
curves) of a spherical cavity of radius Rc for three values of
hs. The symbols at R21

c � 0 indicate simulation data for a flat
wall [15].
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than linearly with increasing hs. For increasing curvature
1�Rc the outside potential becomes weaker, whereas the
inside potential becomes much stronger; this holds for
all values of hs. The gain of strength of the inside
potential upon increasing the cavity curvature is much
more pronounced than the corresponding loss of strength
on the outside. This difference between the behavior
inside and outside widens strongly with increasing hs.
The dependence of the depletion potential on the cavity
curvature is surprisingly strong even for large values of
Rc�Rs. For hs � 0.3 and Rc � 50Rs the density profile
rs�r� of the solvent without the big sphere near the curved
wall differs only slightly from that near a flat wall; its
contact value differs by 1.5% from the corresponding
flat one. However, the potential at contact still differs
by almost 10% from the corresponding flat value. This
amplification of the influence of the curvature can be
understood in terms of the geometric considerations of the
overlap volumes leading to

bWAOa
c �Rc� � 2hs

√
1 1

3sRc

Rc 1 gRb

!
(1)

with s � Rb�Rs and g � 11 and 21 for outside and
inside, respectively. Within AOa the absolute value of
the amplitude of the first curvature correction is the same
inside and outside as can be seen from

bWAOa
c �Rc�

bWAOa
c �`�

� 1 2
3gs2

3s 1 1
1

Rc�Rs
1 O ��Rc�Rs�22� .

(2)

For Rb ¿ Rs, i.e., s ¿ 1 the curvature dependence of
Wc is significantly enhanced.

In a recent experiment [18] Dinsmore et al. used
video microscopy to monitor the position of a single
big colloid particle with Rb � 5.7Rs immersed in a
solution of small colloids with hs � 0.3 inside a vesicle.
These were charge stabilized colloids which are supposed
[18] to resemble closely the model system of hard
spheres confined by a hard wall. From the probability
p�x� of finding the big colloid at the position x— the
quantity actually measured in the experiment—one can
infer the depletion potential W �x� according to p�x� �
pbulke2bW �x� with W �x� � 0 in the bulk. Thus the
spatial resolution of the experimentally determined W �x�
reflects that of p�x�, which at best was approximately 2Rs

in Ref. [18]. In the experiment the big colloid particle
was observed to be most of the time very close to the
vesicle wall inside a shell whose width was chosen to
be 6.7Rs, i.e., even larger than the optimal resolution
2Rs. Approximating W �x� by W�r; Rc�, where r is the
minimal distance between x and the vesicle wall and
Rc the local radius of the wall at this closest point (see
below), the experimentally determined depletion potential
therefore corresponds to an average of W�r; Rc� shown in
Fig. 1 over all visible oscillations. Within this shell the
big colloid was observed to be more often in regions with
450
a small local radius of curvature. This is in qualitative
agreement with both the AOa and our present approach.
Quantitatively, in Ref. [18] the ratio pshell�pbulk of the
probabilities of finding the big particle within the shell and
in the bulk, respectively, was determined. The authors
have documented the logarithm of this ratio, denoted as

bDF :� 2ln
pshell

pbulk

� 2 ln

√Z
Vshell

d3r e2bW�r;Rc��Vshell

!
, (3)

relative to its value bDF` near a flat wall, i.e., for Rc !
`; Vshell is the volume of the shell. In Fig. 4 we compare
the published data for bDF 2 bDF` with our prediction
for this quantity based on the actual depletion potential
as shown in Fig. 1, with the corresponding prediction if
in Eq. (3) and for bDF` the full AOa is used, and with
the so-called truncated AOa, bWAOa

c 2 bWAOa
c,` , i.e., the

AOa values for W�r; Rc� at wall contact, which was used
for comparison with theory in Ref. [18]. We find that
our theoretical prediction as well as the full AOa are
closer to the experimental data than the truncated AOa.
Given the high accuracy of our calculation the remaining
discrepancy cannot be due to insufficient theoretical
knowledge of W�r; Rc�. The fact that in Ref. [18] only
the radius of curvature in plane could be determined,
polydispersity of the solvent, and the possible presence of
dispersion forces are among the candidates for explaining
this discrepancy. The small difference between the full
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FIG. 4. Comparison of the experimental data [18] for bDF 2
bDF` [Eq. (3)] as a function of the local radius of curvature
Rc in units of Rs with the prediction of the present theory (full
line in Fig. 1) for this quantity. The dotted line corresponds to
the dotted line in Fig. 1. The dashed line denotes bWAOa

c 2
bWAOa

c,` which are the AOa values for W �r; Rc� at wall contact
which served in Ref. [18] as theoretical comparison.
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AOa and our theoretical results in Fig. 4 demonstrates
that the present spatial resolution cannot discriminate
between the rich structure shown in Fig. 1 and its AOa.
This emphasizes the need for future experiments with
significantly increased spatial resolution.

For a cavity of general shape z � f���R � �Rx , Ry���� of
its surface relative to a suitable chosen �x, y� reference
plane our results allow us to determine approximately
lateral depletion forces. To this end we introduce nor-
mal coordinates [20] �Rx , Ry , r� such that x � �x, y, z� �
���Rx , Ry , f�R���� 1 rn�R� where r is the minimal distance
of the point x from the surface f�R�, �Rx , Ry� [fi �x, y�]
are the lateral coordinates of that point on the surface
closest to x, and n � ��� 2 =f�R�, 1����

p
1 1 �=f�2 is the

local surface normal pointing towards x. The actual
depletion potential W �x; � f��, which depends function-
ally on f�R�, can be approximated by W �x; � f�� �
W�r�x�; Rc���R�x�����. Here we have assumed that the
cavity surface varies sufficiently smoothly so that its lo-
cal two principal radii of curvature can be described by
the single radius Rc�R�. Within this approximation the
components F

�i�
lat�x� of the lateral depletion force in the

direction of the tangential vector ti , i � 1, 2, is given by

F
�i�
lat�x� �

≠W ���r; Rc�R����
≠Rc

X
j�x,y

≠Rc�R�
≠Rj

ti ? =Rj , (4)

with r � r�x; � f��, R � R�x; � f��, = � ≠�≠x, and n ?

ti � 0 � t1 ? t2. The factor ≠W�≠Rc can be determined
from our above results. Its absolute value increases with
decreasing radius of curvature. Its sign differs inside and
outside of the cavity and changes as a function of the
normal distance r . A big sphere approaching the convex
nonspherical wall from inside (outside) is exposed to an
oscillating lateral force, which pulls the sphere towards re-
gions of the surface with a small local radius of curvature
close to a minimum (maximum) of the depletion potential
and pushes it away from these regions close to a maxi-
mum (minimum). These oscillations of the lateral force
originate from the packing effects of the small spheres.
When the big sphere has reached the wall the lateral force
pulls it along the surface to that point with the smallest
local radius of curvature inside the cavity and pushes it
away from this point towards the point with the largest
local radius of curvature outside of the cavity, respec-
tively. This can already be understood within the AOa
which predicts ≠�bWAOa

c �Rc���≠Rc � 23hsgsRb�Rc 1

gRb�22 [see Eq. (1)]. Since Eq. (1) provides a very good
description of the contact value of the depletion potential,
even for high packing fractions, the above expression for
its derivative is also quantitatively reliable.

Applying Eq. (4) for an ellipsoidal cavity with semi-
axes a � b � 20Rs and c � 30Rs and for a big sphere
with Rb � 5Rs immersed in a fluid of small spheres with
hs � 0.3 yields at contact a maximal ratio of the lateral
force to the normal force of jFlat�Fnormj � 0.07 inside
and outside of the cavity. Such quantitative predictions
for the size of entropic lateral forces along curved confin-
ing walls still await tests by simulations and experiments.
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