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Scissors Mode and Superfluidity of a Trapped Bose-Einstein Condensed Gas
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We investigate the oscillation of a dilute atomic gas generated by a sudden rotation of the confining
trap (scissors mode). This oscillation reveals the effects of superfluidity exhibited by a Bose-Einstein
condensate. The scissors mode is also investigated in a classical gas aboveTc in various collisional
regimes. The crucial difference with respect to the superfluid case arises from the occurrence of low
frequency components, which are responsible for the rigid value of the moment of inertia. Different
experimental procedures to excite the scissors mode are discussed.
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Superfluidity is one of the most spectacular cons
quences of Bose-Einstein condensation and has been
object of extensive experimental and theoretical work
the past, especially in connection with the physics of liqu
helium [1]. Indirect signatures of superfluidity in trappe
Bose-Einstein condensed gases are given by their dyna
behavior at very low temperatures [2] which well confirm
the predictions of the hydrodynamic theory of superfluid
as well as by the occurrence of spectacular interferen
phenomena [3] which point out the importance of cohe
ence effects, typical of superfluids. However, direct ev
dence of superfluidity is still missing in these systems.

Important manifestations of superfluidity are associate
with rotational phenomena. These include the strong r
duction of the moment of inertia with respect to the clas
sical rigid value and the occurrence of quantized vortic
[4]. These peculiar features are the direct consequence
the irrotational nature of the superfluid flow and have a
ready been the object of theoretical work also in the ca
of dilute trapped gases (see, for example, Ref. [5] and r
erences therein).

The purpose of this paper is to focus on the oscillato
behavior exhibited by the rotation of the atomic clou
with respect to the symmetry axis of the confining tra
(see Fig. 1) and on the corresponding superfluid effec
caused by Bose-Einstein condensation. A similar mod
called the scissors mode, is well known in nuclea
physics [6], where it corresponds to the out-of-phas
rotation of the neutron and proton clouds, and its rece
systematic experimental investigation [7] has confirme
the occurrence of superfluidity in an important class o
deformed nuclei.

In the presence of a deformed external potential th
restoring force associated with the rotation of the clou
in the x-y plane is proportional to the square of the
deformation parametere of the trap [see Eq. (1) below].
The mass parameter is instead fixed by the moment
inertia. For a superfluid system this is given by th
irrotational value and is hence proportional toe2. As a
consequence, the frequency of the oscillation approach
a finite value when the deformation tends to zero. Vic
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versa, in the absence of superfluidity, the moment
inertia takes the rigid value and the scissors mode exhib
low frequency components.

Let us start our investigation by considering a Bos
Einstein condensed gas at equilibrium in a deform
potential of the form

Vext�r� �
m
2

v2
xx2 1

m
2

v2
yy2 1

m
2

v2
z z2 (1)

with v2
x � v

2
0�1 1 e� and v2

y � v
2
0�1 2 e�, where e

gives the deformation of the trap in thex-y plane. For
large enough samples, one can safely use the Thom
Fermi approximation for the ground state density,

n0�r� � �m 2 Vext�r���g , (2)

where the strength parameterg is related to the scattering
length a by the relationg � 4p h̄2a�m. We consider
a gas initially at equilibrium in the�x0, y0, z� frame. At
t � 0, one rotates abruptly the eigenaxis of the trap fro
its initial position to �x, y, z� by a small angle2u0 (see
Fig. 1). As a consequence of the sudden rotation,
system will no longer be in equilibrium and will star
oscillating. If the angleu0 is not too large the oscillation

FIG. 1. Exciting the scissor mode: initially the gas is the
malized in an anisotropic trap. One then abruptly rotates
eigenaxis of the trap by a small angle.
© 1999 The American Physical Society
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will correspond to a rotation of the cloud in the x-y plane
(scissors mode). The equations describing this rotation
can be easily obtained at zero temperature starting from
the time-dependent Gross-Pitaevskii equation for the order
parameter which, in the Thomas-Fermi regime, takes the
typical form of the hydrodynamic equations of super-
fluids [8]:

≠n
≠t

1 div�nv� � 0 , (3)

m
≠v
≠t

1 =r

µ
Vext�r� 1 gn 1

my2

2

∂
� 0 . (4)

Starting from Eqs. (3) and (4) one easily obtains, in the
linear regime, the closed set of equations,

d
dt

�xy� � �xyy 1 yyx� , (5)

d
dt

�xyy 1 yyx� � 22v2
0�xy� , (6)

involving the relevant quadrupole variable �xy� �R
dr xyn�r, t��N . The corresponding density profile can

be parametrized in the form

n�r, t� � �m 2 Vext�r� 2 mv2
0a�t�xy��g , (7)

where a is a small time-dependent coefficient related to
�xy� by

�xy� � 2
2v

2
0a�t�

3mv2
xv2

y
�Vext�0 , (8)

and�Vext�0 is the expectation value of the harmonic po-
tential at equilibrium. The associated velocity field is ir-
rotational and has the form v�r, t� ~ =�xy�. It is worth
noticing that the parametrization (7) will describe a ro-
tation of the sample with the angle fixed by the relation
a�t� � 2eu�t� only if a ø e. If instead a is larger than
e, then (7) corresponds to a traditional quadrupole defor-
mation characterized by a change of the intrinsic shape and
the connection with the geometry of the scissors is lost.
In order to obtain a visible signal of rotational type in the
density (7) the deformation parameter should not be con-
sequently too small. Assuming a ø e (or, equivalently,
u ø 1), one finds, from (5), (6), and (8), the equation

d2u�t�
dt2 1 2v2

0u � 0 . (9)

The solution, corresponding to the chosen initial conditions
u�0� � u0 and u0�0� � 0, is u � u0 cos�vt� and oscillates
with frequency v �

p
2 v0.

Let us now consider the behavior of the system in the
absence of Bose-Einstein condensation. The simplest case
is the high-T , classical regime where analytic solutions
are available in the framework of the Boltzmann kinetic
equations. We will use the method of the averages,
already employed to discuss the damping of the quadrupole
oscillation [9]. The method provides the following closed
set of equations:

d
dt

�xy� � �xyy 1 yyx� , (10)

d
dt

�xyy 2 yyx� � 2ev2
0 �xy� , (11)

d
dt

�xyy 1 yyx� � 2��yxyy� 2 v2
0�xy�� , (12)

d
dt

�yxyy� � 2v2
0�xyy 1 yyx� 2 ev2

0�xyy 2 yyx�

2
�yxyy�

t
, (13)

where the averages are taken here in both coordinate and
velocity space and the collisional term has been evalu-
ated in the linear regime using a Gaussian approximation
for the distribution function [9]. The relaxation time en-
tering (13) is fixed by the relation t � 5��4gcoll�, where
gcoll � n�0�yths�2 is the classical collisional rate, n�0� is
the central density of the atomic cloud, yth �

p
8kBT�pm

is the thermal velocity, and s � 8pa2 is the elastic cross
section. Notice that collisions affect only the equation for
the variable �yxyy�. In fact the other variables are con-
served by the elastic collisions [10]. It is also worth notic-
ing that the angular momentum m�xyy 2 yyx� is not a
constant of motion, due to the absence of symmetry in the
confining potential and is coupled, through Eq. (11), to the
quadrupole variable �xy�. It is finally interesting to note
that Eqs. (10)–(13), with the collisional term set equal to
zero, exactly hold also in the case of a noninteracting Bose
or Fermi gas. In this case the effects of quantum statistics
enter only through the initial conditions of the correspond-
ing dynamic variables. For oscillations of small amplitude
the density profile of the classical gas corresponds to the
Gaussian parametrization

n�r, t� ~ e2�Vext�r�1a�t�mv
2
0xy��kT , (14)

and the expectation value of �xy� is given by the same re-
lation (8) previously derived for the T � 0 Bose-Einstein
condensed gas. The initial conditions corresponding to
the sudden rotation of the gas are given by �xy�t�0 �
eu0�x2 1 y2�t�0, �xyy 6 yyy�t�0 � 0, and �yxyy�t�0 �
0. The vanishing of �xyy 6 yyy�t�0 follows from the
absence of currents at t � 0, while the vanishing of
�yxyy�t�0 is the consequence of the initial isotropy of the
velocity distribution. By using the relationship a�t� �
22eu�t� holding for small rotational angles, the equa-
tions of motion [(10) and (11)] can be usefully rewritten in
the formµ

d4u

dt4 1 4v2
0

d2u

dt2 1 4e2v4
0u

∂
1

1
t

µ
d3u

dt3 1 2v2
0

du

dt

∂
� 0 , (15)

and the initial conditions take the form u�0� � u0,
u00�0� � 22v

2
0u�0�, and u0�0� � u000�0� � 0. Notice
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that Eq. (15) differs from the corresponding Eq. (9) for
the superfluid regime. It gives rise to different solutions
propagating at high and low frequency. For small values
of the deformation parameter e, the former can be iden-
tified with the �z � 2 irrotational quadrupole oscillation,
i.e., the classical counterpart of the superfluid oscillation
described by (9). The latter instead corresponds to the
rotational mode of the system and is absent in the super-
fluid case. Actually, if e becomes too small, the variable
u loses its geometrical meaning. In this case the physical
variables are, on the one hand, the moment �xy�, which
characterizes the high-lying quadrupole mode and is
coupled with the variables �xyy 1 yyy� and �yxyy�, and,
on the other hand, the angular momentum m�xyy 2 yyx�,
which becomes a constant of motion [see Eq. (11)].

Let us discuss the different collisional regimes pre-
dicted by (15). In the collisionless regime [first term in
(15)] the two frequencies are undamped and given, re-
spectively, by jvx 6 vyj. In the opposite, hydrodynamic,
limit (second term) only the high-lying oscillation sur-
vives with frequency v �

p
2 v0, while the low-lying so-

lution becomes overdamped as t ! 0, in agreement with
the diffusive nature of the transverse waves predicted by
classical hydrodynamics [11]. A maximum damping is
obtained for v0t � 1, a condition easily achievable in
current experiments.

The chosen initial condition, corresponding to a sudden
rotation of the sample, gives rise to the excitation of both
the low and high frequency modes. The resulting time evo-
lution of the observable u�t� is shown in Figs. 2 and 3 for
two different collisional regimes and the choice e � 0.3.
In Fig. 2 we have made the “collisionless” choice ev0t �
6, so that both the high-lying and low-lying modes have
small damping. The figure clearly shows the combined
signals propagating with frequencies jvx 6 vyj respec-
tively. In Fig. 3 we have instead made the choice ev0t �
0.15 corresponding to large damping. With such a choice
the low frequency rotational mode is overdamped and the

FIG. 2. Angle u as a function of time for a classical gas (solid
line) in the collisionless regime (ev0t � 6 and e � 0.3) and
for a superfluid regime (dashed line).
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remaining oscillation exhibited by the curve is due to the
high frequency component. The achievement of the over-
damped, “hydrodynamic” regime for the low frequency
mode is favored by the choice of small values of e.

From the comparison between the curves of Figs. 2
and 3 it emerges very clearly that the main feature of
the superfluid regime (dashed lines in Figs. 2 and 3) is
the absence of low frequency components. This behavior
should be easily verifiable experimentally. It might also
provide a useful test of superfluidity in Fermi trapped
gases, below the BCS transition.

Until now, we have discussed the superfluid case �T �
0� and the classical regime T . Tc. Below Tc the system
can be described in terms of a two-fluid model, and
one needs two different angles to describe the motion of
the system. Neglecting interaction effects between the
two fluids, the superfluid component would be governed
by (9) while the thermal part would evolve according
to (15). Of course, in this case the relaxation time t

should be evaluated by taking into account Bose statistics.
Inclusion of interaction effects between the condensate and
the thermal component would lead to a damping of the
superfluid oscillation, similar to what happens in the case
of the quadrupole mode [12].

The sudden rotation of the trap is not the only way to
excite the scissors mode. In the last part of this Letter we
discuss an alternative procedure which further emphasizes
the superfluid nature of the Bose-Einstein condensed gas.
We consider a gas initially in equilibrium within a trap
rotating with frequency V. Experimental techniques to
achieve rotating configurations of this type are in progress
[13]. At the time t � 0 we suddenly stop the rotation
of the trap, and the gas, due to its inertia, will start
rotating. In the absence of superfluidity the moment of
inertia is large and the oscillations will be characterized
by low frequency components and large amplitudes. Vice
versa, if the system is superfluid the moment of inertia
is small (proportional to e2) and the oscillations will be

FIG. 3. Angle u as a function of time for a classical gas (solid
line) in the hydrodynamic regime (ev0t � 0.15 and e � 0.3)
and for a superfluid regime (dashed line).



VOLUME 83, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 29 NOVEMBER 1999
characterized by large frequencies and small amplitudes.
The equations of motion describing the rotation are still
given by (5) and (6) but the initial conditions are different,
corresponding to the presence of a current term in the
system at t � 0. One finds u�0� � 0 and u0�0� � V.
In the classical case, one has the additional conditions
u00�0� � u000�0� � 0. The amplitude of the oscillations, in
the collisionless regime, scale as V�v0 for the superfluid
and as V��v0e� for the classical gas. The difference is
due to the fact that at t � 0 the velocity field generated
by the rotation is very different in the two cases. In
the superfluid case it is given by the irrotational form
v � 2Ve=�xy�, while in the classical case it is given by
the rotational form v � V 3 r. If the amplitude of the
oscillation becomes too large the dynamic variable �xy�
can no longer be simply connected with the angle u. This
easily happens in the classical case, where the amplitude
of the oscillation is magnified by the factor 1�e.

The excitation of the scissors mode, based on a sudden
switching off of the rotation of the trap, would allow also
for an explicit determination of the moment of inertia
Q of the gas defined by the linear relation m�xyy 2

yyx�t�0 � VQ�N . In fact the knowledge of the time
evolution of �xy� permits one to calculate directly the
value of the angular momentum at t � 0. From Eq. (11),
which holds for classical as well as for quantum systems,
one has m�xyy 2 yyx�t�0 � 22ev

2
0

R
dv F�v��v with

F�v� defined by

�xy� �t� �
Z

dv F�v��eivt 2 e2ivt��2i . (16)

On the other hand, from the model-independent equa-
tion (10), one easily finds the result �xyy 1 yyx�t�0 �R

dv F�v�v so that, by using the relation �xyy 1

yyx�t�0 � V�x2 2 y2�t�0 predicted by linear response
theory [14], one finally obtains the useful expression,

Q � Qrig�v2
y 2 v2

x �
�x2 2 y2�t�0

�x2 1 y2�t�0

R
dv F�v��vR
dv F�v�v

,

(17)

relating the moment of inertia of the system to the
measurable Fourier signal F�v�. In this equation, Qrig �
Nm�x2 1 y2� is the rigid value of the moment of inertia.
Notice that Eq. (17) provides an exact relationship for the
moment of inertia holding for classical as well as Bose
or Fermi interacting systems confined by a harmonic trap
of the type (1). If the system oscillates with the single
frequency v �

p
2 v0, as happens in the T � 0 Thomas-

Fermi superfluid regime, one immediately finds the result
Q � e2Qrig, corresponding to the irrotational value of
the moment of inertia. Vice versa, in a classical gas or
in a normal Fermi gas trapped by a harmonic potential,
the response is dominated by low frequency components,
of order ev0, and Eq. (17) yields the rigid value for the
moment of inertia, confirming the results for Q previously
obtained [5] using sum rule techniques.
We acknowledge fruitful discussions with J. Dalibard,
L. Pitaevskii, and F. Zambelli. This project was supported
by INFM through the Advanced Research Project on BEC
and by MURST.

Note added.—After submission of this Letter, experi-
ental evidence for superfluidity was reported by Matthews
et al. [15] and by Raman et al. [16]. The scissor mode
was observed by Marago et al. [17].
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