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Observation of Quantum Accelerator Modes
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We have realized a quantum accelerator mode using a system consisting of ultracold cesium
falling through a pulsed standing wave of off resonant light. We present a picture of this system b
on diffraction and show that the effect arises from the application of blazed matter wave diffrac
gratings. The implications of our results for quantum chaos and the prospect of constructing a
angular separation matter wave beam splitter are discussed.

PACS numbers: 03.75.–b, 05.45.Mt, 42.50.Vk
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The concept of accelerator modes has been kno
for many years in the fields of chaos [1] and plasm
physics [2]. They occur when a particle is periodicall
kicked in such a way that with each kick the maximum
momentum is transferred. As in the case of a surfer on
ocean wave, the momentum which is imparted depen
on the particle’s position and velocity in the potentia
How does this translate into quantum mechanics? In t
Letter we utilize the quantum delta kicked rotor realize
with atoms in a regularly pulsed sinusoidal potenti
[3] to demonstrate a quantum accelerator mode. In t
situation the accelerator mode can be understood as
consecutive application of blazed diffraction gratings fo
matter waves. As in light optics where an enhancement
diffraction occurs for orders which match the geometric
paths, so the matter wave diffraction is enhanced in t
directions of the classical paths.

For our experiments we use laser cooled cesium ato
in a far off resonant standing light wave aligned parallel
the Earth’s gravitational field. This produces a sinusoid
potential [4] with a period of half the optical wavelength
which is switched on periodically for short times to realiz
deltalike kicks. After a number of kicks the momentum
distribution of the atomic ensemble is observed.

The signature of an accelerator mode is a linear
crease in momentum with the number of kicks. The e
perimental momentum distributions for different numbe
of kicks are shown in Fig. 1. Clearly the atoms in th
accelerator mode move out linearly in momentum spa
It is important to note that the probability of staying in
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this mode is very high and from the experiment is foun
to be 99.3 6 0.2% per light pulse. The data show tha
the atoms were accelerated to a maximum velocity cor
sponding to�100 photon recoils. Furthermore, we expec
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FIG. 1. The experimental momentum distributions for a
60 ms pulse separation as a function of the number of light
pulses. About 20% of the initial momentum distribution, which
has a full width at half maximum of nine photon momenta, is
in an accelerator mode and gains about two photon kicks per
pulse. The probability for an atom to stay in the accelerator
mode after a light pulse is 99.3 6 0.2%.
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that the momentum is imparted coherently since this is the
result of diffraction.

The momentum distributions measured after 30 kicks
for different times between the kicks are shown in
Fig. 2. Part of the initial distribution is accelerated for
certain kick separations. Additionally, the direction of
the acceleration reverses as the time between the pulses
changes about a characteristic value.

The narrowing of the momentum distribution at 67 ms
has been observed previously in the context of quantum
chaos experiments with the delta kicked rotor [5]. It was
called a quantum resonance and happens at half multiples
of a specific time which we will call the Talbot time.
In these experiments no distinct accelerator mode was
observed because the standing light wave was oriented
perpendicular to the direction of the Earth’ s gravitational
acceleration. This is different from our experiment in
which the light wave is parallel to the direction of Earth’ s
acceleration. The matter wave interference, in the near
field, localizes the atom distribution in the accelerator
mode to less than the periodicity of the kicking potential.
Gravity pushes this localized atom distribution for each
light pulse to a position where the classical momentum
kick from the periodic potential is maximal.

We now develop a diffractive picture to explain this
phenomenon which we will use later in our numerical
analysis. The periodic potential is of the form

U�x, t� �
Umax

2
�1 1 cos�Gx��

X

Np

d�t 2 NpT � (1)

FIG. 2. The measured momentum distribution after 30 kicks
for different times between the pulses. At 67 ms the momen-
tum distribution becomes small, as has been observed in the
context of the delta kicked rotor [5]. Below and above this
time, a subensemble of the initial atom distribution matches the
condition for an accelerator mode.
4448
with G � 2k where k is the light wave vector. The delta
function expresses the periodic switching of the light,
with T the time between pulses and Np giving the
pulse number. Wave mechanics describes the interaction
of a de Broglie wave with a periodic potential as
diffraction from a phase grating because the potential
spatially changes the phase of an atomic wave as f�x� �
2U�x�Dt�h̄, where Dt is the interaction time. Since the
pulse length is assumed to be very short the movement of
the particle during the interaction is negligible, a situation
known as the Raman-Nath regime. Thus the standing
light wave acts as a thin phase diffraction grating.

The diffraction amplitude for the nth order is given
by inJn�fd�, where Jn is the nth order Bessel function
of the first kind and fd � UmaxDt��2h̄�. For the free
propagation one is in the near field regime, where all the
diffracted orders interfere. A characteristic length scale
for the near field is the Talbot length LTalbot �

2d2

ldB
, where

d is the grating period, equal to half the wavelength of
the light, and ldB is the wavelength of the diffracted
de Broglie wave. At this distance from a diffractive
object one can observe a one to one image of the wave
function which exists directly behind the diffracting object.
This arises from the fact that the individual diffraction
orders accumulate a phase difference of multiples of 2p.
Similarly, p out of phase images occur at odd multiples
of half the Talbot length. These reimages are known as
Fourier images and are discussed in detail in [6]. The
corresponding Talbot time is given by TTalbot � LTalbot�y,
where y is the atomic velocity. Thus,

TTalbot � p
4m
h̄G2 , (2)

which for cesium is 133 ms.
For standing light waves switched on at multiples of

this time, the wave function at the time of each grating
is the same as the wave function directly after the previ-
ous grating. Thus the action of the periodically switched
standing light waves is the same as one “ thick” stand-
ing light wave. No momentum spread with increasing
number of pulses is expected since one enters the regime
of Bragg scattering where only certain initial momenta
are diffracted. For odd multiples of half the Talbot time,
where the reimage is p out of phase, each consecutive
phase grating compensates the phase modulation and thus
leads to no diffraction at all. These two cases are known
as quantum resonances and were first observed by Moore
et al. [5] for the delta kicked rotor.

In order to understand the experimental observations
one has to look more closely at the atomic wave field near
the half Talbot time. For times longer or shorter than
this an intensity modulated wave field is formed due to
the specific phase evolution of the diffracted orders. The
positions of the maxima depend on the initial velocity yi

in the direction of the grating through the relative phases
of the different diffraction orders n established with the
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first light pulse (diffraction grating). These phases are
given by fn �

h̄G2

2m Tn2 1 yiGTn. The first phase term
comes from the recoil frequency shift while the second is
a result of the Doppler shift due to the initial velocity yi .

The gravitational acceleration leads to an additional
shift of the phase which can be understood as an extra
Doppler shift due to the change in velocity of the atom.
It is given by f

grav
n � �gNpT �GTn. If the time between

the pulses is chosen to be 60 ms as in the experiment
shown in Fig. 1, an initial velocity corresponding to one
photon recoil will have its near field intensity maxima at
the positions of the steepest gradient of the potential. The
stability of the accelerator mode implies that between the
light pulses the phase differences accumulated between
the orders which constitute the accelerator mode are
multiples of 2p . Without an acceleration of the atoms
relative to the standing light wave (such as gravity
provides) it would be impossible to fulfill this condition
for a large number of pulses.

The near field of the accelerator mode at the time of a
given light pulse is shown by the solid lines in Fig. 3. The
position of the periodic potential is given by the broken
lines. Clearly for separations between the light pulses
of 60 and 76 ms the near field is localized on opposite
sides of the periodic “kicking” potential. The localization
arises because the accelerator mode consists of several
different diffraction orders, and the position is determined
by the free evolution. The slightly different efficiencies
of the accelerator mode above and below the resonance
time are a result of the different amounts of localization
of the atomic wave field.

From light optics one knows that if a geometrical path
overlaps with a diffraction order, diffraction enhancement
is observed. Similarly in wave mechanics a diffraction
order is enhanced if it overlaps with the classical path.
Because of the properties of the diffraction at a phase
grating [7] the order diffracted with the highest probabil-
ity is given roughly by nmax � �fd 2 1�, corresponding
to a most likely momentum of pquantum � nmaxh̄G. The
wave function is localized at the position of steepest po-
tential gradient so that the classical change in momentum
is pclass � fdh̄G. Since a highly probable diffraction or-
der closely coincides with the classical path for all fd, en-
hancement should work for every potential height. Since
the wave function is not perfectly localized at the steepest
gradient the classical force leads to a range of classical
paths and thus the enhancement is shared over many or-
ders. As the phase modulation fd increases, the change
in the potential gradient over the localization of the wave
function becomes greater. It was confirmed numerically
and experimentally that an efficient accelerator mode is
present in the range 0.3p , fd , 1.5p.

A numerical simulation with this picture at hand is
straightforward. The interaction can be described by
a unitary transformation Uint

mn � in2mJn2m�fd� jm� 	nj,
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FIG. 3. Near field and momentum distributions of atoms with
a starting momentum of one photon recoil for (a) 60 ms and
(b) 76 ms pulse separations for different pulse numbers and
with fd � p. The standing light wave potential is indicated
by the broken sinusoidal line. In (a) the localization of the
wave field is at the position where the potential gradient has its
maximum positive value. Thus the classical path overlaps with
a negative diffraction order. This is equivalent to an optical
blazed grating. In (b) the localization is on the opposite side
of the potential so that positive diffraction orders are enhanced.

where m and n are the final and initial diffraction orders,
respectively; the free propagation can be described by
Ufree

mn � eifn dmnjm� 	nj. Subsequent applications of the
unitary transformations for each light pulse lead to the
final momentum distribution. To compare theory with
experiment one has to take into account the critical
dependence of the near field on the incident momenta.
The transformations are applied for each of the momenta
initially present and their respective final momentum
distributions are added. The numerical results for our
experimental parameters are shown in Fig. 4 and reveal
the same structure as the experimental results in Fig. 2.

Our experimental demonstration of the accelerator
modes was accomplished using cesium atoms dropped
out of a magneto-optic trap. Laser diodes close to
the cesium D2 6S1�2 ! 6P3�2 transition were used
4449
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FIG. 4. Theoretical prediction of the momentum distribution
after 30 kicks for different times between the pulses and with
fd � p. The theoretical results explain the accelerator mode
behavior and the dispersion of the noncontributing atoms. In
the numerical calculation 27% of the initial atoms are in
the accelerator mode as compared with the experimentally
measured efficiency of 20%.

for cooling, trapping, and detection of the atoms. The
temperature of the atoms after cooling in optical molasses
was 3 mK corresponding to a DpFWHM � 9 photon
recoils. The pulsed standing light wave was realized
parallel to the Earth’ s gravitational field and was provided
by a Ti:sapphire laser, detuned �5 GHz below the
D1 transition �6S1�2, F � 4� ! �6P1�2, F � 3�. The
switching was performed with an acousto-optic modulator
driven with a fast rf amplitude modulator. The �4 mm
diameter Ti:sapphire beams were superimposed with the
vertically propagating trap beams to provide a good over-
lap between the atomic cloud and the kicking standing
light wave. The kicking sequence consisted of a series
of 500 ns (FWHM), 250 mW pulses with a separation
that could be varied between T � 20 and 150 ms. After
falling 50 cm, the atoms passed through a 2 mm thick
sheet of light tuned on resonance to the cooling transition.
The amount of absorption in this beam provided a time
of flight measurement which allowed us to deduce the
atomic momentum distribution in the direction of the
kicks with a resolution of two photon recoils. Finally
for each set of parameters the momentum distribution
measurement was averaged over 15 drops of the atoms.

The quantum accelerator mode has very interesting fea-
tures in the context of quantum chaos. There the mean
energy of the ensemble after a certain number of kicks is
used to characterize the system. In the situation where
an accelerator mode is present, the quantum mechanical
4450
mean energy is not smaller, as is usually the case, but
is larger than for the equivalent classical system. This
is because a quantum accelerator mode may be present
even when one is not allowed classically. In the latter
case the mode depends on the potential height whereas
quantum mechanically it depends mainly on the free evo-
lution. This is the first experiment showing that quantum
mechanics is capable of not only inhibiting but also en-
hancing the momentum spread. This follows intuitively
from the fact that the quantum inhibition of the momen-
tum spread, which is usually observed, can be only an in-
terference effect. However, constructive and destructive
interference must both exist and the nature of the inter-
ference will be determined by the relative positions of the
periodic potentials. The diffractive approach we have pre-
sented explains the experimental observation of enhanced
quantum diffusion when classical accelerator modes are
present [8].

The quantum accelerator mode is also a very efficient
way of imparting a large amount of momentum coherently
to a particle. In our case the data in Fig. 1 shows
an efficiency per pulse of 0.993 6 0.002 with a mean
momentum transfer per pulse of 1.6 photon momenta.
From Fig. 2 the maximum observed momentum transfer
per pulse of 4.5 photon momenta occurs at 64 ms with
an efficiency of 0.984 6 0.005. This leads to an atom
accelerated to 100 photon momenta in a total time of
1.9 ms with light on for only 15 ms and a correspondingly
small level of spontaneous emission. The efficiency
implies that the momentum could be increased simply by
applying more laser pulses as long as the Raman-Nath
regime is fulfilled.

This process could be used as a beam splitter for an
interferometer with a large spatial splitting. However,
it is necessary to take into account that the accelerator
mode comprises several momentum states (Fig. 3) and
also that only a momentum change can be accomplished
and not an amplitude splitting. A beam splitter can
be formed by applying the scheme we have used in
the separated Ramsey interferometer [9]. An internal
coherent superposition of two nondegenerate states can
be formed via a microwave field so that only one part
of the superposition can interact strongly with the light.
The momentum of this state can then be changed with an
accelerator mode in which the effect of gravity is replaced
by acceleration of the standing light wave induced with a
Pockels cell. Thus the direction of the acceleration can be
readily controlled.

In order to demonstrate this beam splitter clearly, a
well defined initial momentum has to be realized and a
momentum selective detection is needed to pick out the
accelerated atoms. We are currently working towards a
Raman-cooling setup which will allow us to prepare and
analyze the momentum of the atoms on the recoil scale
and build an interferometer based on beam splitting with
accelerator modes.
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