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Analytical Approach to the Protein Design Problem
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We present an analytical method for determining the designability of protein structures. We apply
our method to the case of two-dimensional lattice structures, and give a systematic solution for the
spectrum of any structure. Using this spectrum, the designability of a structure can be estimated. We
outline a hierarchy of structures, from most to least designable, and show that this hierarchy depends
on the potential that is used.

PACS numbers: 87.10.+e
The protein design problem asks which and how many
amino-acid sequences fold into a given protein structure.
This problem, having obvious practical and evolution-
ary significance, attracted considerable attention and ef-
fort of experimentalists [1] and theorists [2,3]. In par-
ticular, Tang and co-workers carried a thorough study of
the design problem for a simple square and cubic lattice
model of proteins [3]. These authors enumerated all se-
quences made of two types of monomers and all conforma-
tions for two-dimensional 36-mers and three-dimensional
27-mers. This calculation provided a density of states in
sequence space for the studied models, i.e., how many se-
quences have a given energy in a given conformation. For
each conformation, the “designability,” which is defined as
the number of sequences that have this conformation as a
ground state, was determined in [3]. Interestingly, it was
found that designability varied from conformation to con-
formation. Furthermore, the structures that possess cer-
tain degrees of symmetry turned out to be most designable
[3]. This result tempts one to speculate that the factor of
designability may be the cause of symmetries observed in
real proteins.

The physical reason for the observed relationship be-
tween geometric properties of conformations and their
designability remained unclear. In particular, it is impor-
tant to evaluate how robust this relationship is with respect
to choice of lattice model, model protein “alphabet,” and
interaction parameters between model aminoacids. Re-
cent numeric studies [4] and [5] showed that the set of
the most designable structures does indeed depend on the
potential and amino-acid alphabet used.

A deeper understanding of the designability prob-
lem requires an analytical solution that may shed light
on the general geometric features that make structures
designable. Such a solution will facilitate an informed
connection between model results and real proteins.

In this Letter, we present a statistical mechanical
analysis of designability, and give an analytical solution
to the problem on a two-dimensional lattice. Our analysis
is based on the analogy between protein design and a class
of statistical-mechanical spin models established in earlier
works [2,6,7].
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We use the standard lattice model to represent protein
conformations. On a lattice, a structure is defined as a
self-avoiding walk of length N . The energy of a sequence
of residues �si� in a structure with coordinates of the
monomers �ri� is

H��si�, �ri�� �
NX

i,j

U�si , sj�D�ri , rj� . (1)

D�ri , rj� is defined to be 1 when ri and rj are nearest
neighbors on the lattice and not sequence neighbors along
the chain. For real proteins the definition of a contact
requires a choice of a cutoff distance [8]. The folding
potential is given by a symmetric matrix U�a, b� whose
entries are the pairwise interaction energy between amino-
acid residues of types a and b.

In any instance of the design problem, the structure �r0
i �

is given (we will refer to this structure as the “target confor-
mation” for design), and we are asked to find all sequences
whose native (folded) state is �r0

i �. The number N of such
sequences is the designability of the structure. Since the
residues of a protein are tightly packed in space, only max-
imally compact lattice structures are generally studied. On
a square lattice these correspond to self-avoiding walks that
completely fill a square. The folding potential H is there-
fore assumed to have a nonspecific attractive term (which
we have omitted), that favors compact conformations.

In order for a sequence to fold and to be stable in the
desired target conformation, it must have lowest energy in
this conformation compared to its energy in all alternative
conformations. The spectrum of energies of alternative
conformations is qualitatively similar to that of a random
heteropolymer, i.e., it consists of a continuum part, with
a high density of states whose lowest energy is Ec, and
of a few discrete energy levels lying below Ec [9,10].
Importantly, the value of Ec is self-averaging, i.e., it
depends on amino-acid composition rather than on a
particular sequence [2,11].

Thus the issue of designability is reduced to the
question of how many sequences with a given amino-
acid composition can fold into a given conformation with
an energy E ø Ec. Each structure has a sequence-space
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energy spectrum given by the energy density

n�E, D� �
X
�si�

d�H��si�, D� 2 E� . (2)

The above expression corresponds to a system of N
spins �si� confined to an interaction geometry dictated
by D�ri , rj�, with si [ 1, . . . , q, where q is the number
of possible residue types. In this language the amino-
acid composition of a sequence is equivalent to total
magnetization and is denoted by the letter C, which is in
general a q-dimensional vector. The probability p�E, C�
that a sequence �si� of composition C, will fold into a
structure D, where E � H��si�, D�, is [12]

p�E, C� � exp

∑
21p

4pN logg
exp

µ
E 2 Ec

Tc

∂∏
, (3)

where Tc is the temperature of the thermodynamic “freez-
ing” transition in random heteropolymers having compo-
sition C, and g is the effective number of conformations
per monomer [13]. These properties of Ec render it a
valuable link between sequence and structure space. If
we know the spectrum n�E, D, C� of a structure D over
all sequences of fixed composition C, we can compute its
expected designability as follows:

N �D� �
X
E,C

P�E, C�N�E, D, C� . (4)

On a two-dimensional square lattice, maximally com-
pact structures have a property that makes the spectrum
calculation n�E, D, C� analytically tractable. If the ends
of the chain are prescribed to be neutral— they do not in-
teract with any monomers— then the entire structure can
be decomposed into a direct product of one-dimensional
loops and strands. A loop is a collection of S monomers
in which monomer i is in contact with monomer i 1 1,
for 1 # i # S 2 1, and monomer 1 is in contact with
monomer S; if monomer 1 and monomer S are not in
contact, we call the collection a strand. Figure 1 shows
the decomposition of a particular 36-mer into strands and
loops (ends have been allowed to interact in this figure).
This decomposition derives from the restriction that near-
est neighbors along the chain are not in contact, leaving
each monomer in the interior of a structure exactly 2 con-
tacts to make. Since this excludes branched systems of
contacts, the only possibilities left are loops and strands.
Monomers lying on the square border of a structure can
make only one contact because the chain must occupy two
of the three neighboring sites. Strands, therefore, must be-
gin and end on the border of a structure, and loops must
lie entirely within it. Since the corners of a structure can-
not interact, a square structure of length N has 4

p
N 2 8

interacting border sites. Thus, there must be 2
p

N 2 4
strands in each structure. Including the ends of the chain
would add at most 2 branched systems, or would change
the number of strands by at most 2. While the number of
strands is largely the same for all structures, the distribu-
tion of lengths of strands is structure dependent, and will
prove to be the determinant of designability.
4438
FIG. 1. Strand�loop decomposition for a 36-mer.

We restrict this discussion to systems with two types of
amino acids, which we denote 11 and 21, although the
general methodology can certainly be applied to larger
alphabets. Following the analogy between protein de-
sign and spin models [2,7], amino-acid types will be
called “spins” in what follows. The interaction ener-
gies are taken to be U�1, 1� � a, U�21, 21� � b, and
U�1, 21� � U�21, 1� � d. The general aim is to com-
pute n�E, D, C�, which can be deduced from the partition
function at composition C, over all sequences �si�:

Z�C� �
X
�si �

e2bH�si�d

µ
C 2

X
i

si

∂
.

Note that composition in the 2-spin case is a scalar cor-
responding to the net magnetization. The delta function
can be expressed as a Fourier integral, and if we define
the parition function for the jth loop or strand to be

Zj�v� �
X

�si�j

e2bH�si�2iv
P

si ,

where �si�j is the set of all spins in the jth loop or strand,
we can write

Z�C� �
Z

eivC dv

s1lY
j�1

Zj�v� , (5)

where s and l are the number of strands and loops,
respectively. Zj�v� can be computed by the transfer
matrix method; we define the transfer matrix T as

T �

µ
Ae2iv D

D Beiv

∂
,

where A � e2ba, B � e2bb , and D � e2bd . If l1

and l2 are the eigenvalues of T , we have for a loop,
Zj�v� � l

nj

1 1 lnj
2 , while for a strand

Zj�v� �
X

s1,snj

e2�s11snj �iv�2�s1jT
nj21jsnj 	 , (6)

where nj is the length of the jth loop or strand. The
expression for strands is more complicated than that for
loops because the first and last monomers in a strand have
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to be summed over separately. By diagonalizing T , the
following expression for strands can be derived:

Zj�v� � ��2D 2 A 2 B� �l
nj21
1 2 lnj21

2 �

1 �eiv 1 e2iv� �l
nj

1 2 lnj
2 ����l1 2 l2� .

(7)

The eigenvalues can be calculated, and one observes
that if D2 � AB, we get l1 � Ae2iv 1 Beiv , while
l2 � 0. This situation corresponds to any potential for
which d � �a 1 b��2. We will call this the symmetric
potential, because any such potential is the same as
a � 1, b � 21, d � 0. Under the symmetric potential,
Zj�v� � l

nj

1 for loops, and Zj�v� for strands simplifies
considerably to

Zj�v� � l
nj22
1 �

p
A e2iv 1

p
B eiv�2. (8)

If N is the chain length of a structure, the total partition
function (5) for the symmetric potential now becomes

Z�C� �
Z

eivC dvlN22s
1 �

p
A e2iv 1

p
B eiv�2s.

Using the binomial expansion, the integral can be cal-
culated exactly and the density of states, n�E, C�, ob-
tained. Figure 2 shows a plot of n�E, C� using a � 21,
b � 1, N � 36, and C � 0.

Under the symmetric potential, a structure’s spectrum
depends only on its length, composition, and the number
of strands. Since these three are the same for each
structure, the spectra of all structures are identical (up to
end effects). This result implies that all structures have
the same expected designability, with fluctuations only due
to the effects of interacting ends and to any sequence-
dependent terms of Ec. For large N these terms will be
insignificant.

The symmetric potential is a singular case in that struc-
tural features play no role in designability. It has previ-
ously been identified in [5] as an important special case for
design, where designabilities of structures were obtained
computationally. The narrow range of designabilities ob-
served in [5] shows that end effects are indeed small even
for small N . We now show how designability becomes
sensitive to structure under perturbations of this potential.
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FIG. 2. Symmetric potential spectrum of a 36-mer.
Under the symmetric potential, one eigenvalue is zero.
If we add a small perturbation u to the potential, so
that a0 � a 1 u, b0 � b, and c0 � �a 1 b��2, we would
expect one eigenvalue still to be small compared to the
other. Under a perturbed potential, then, l2�l1 ø 1.
Starting from the general expression for strands (7), we
observe that if l2 , l1, we have two geometrical series
in R � l2�l1, and we can rewrite it as

Zj�v� � l
nj22
1 Q

"
1 1

nj22X
k�1

Rk 2 �eiv 1 e2iv�
l2

Q
Rk21

#
,

where Q � Ae22iv 1 Be2iv 1 2D. The corresponding
expression for loops is

Zj�v� � l
nj

1 �1 1 Rnj � .

Using these expressions in Eq. (5) for Z�C� results in a
product of the loop and strand Zj’s. We can expand
this product in R, and obtain the following kinds of
terms: The principal contribution lN22s

1 Qs (zero order
in R) is a structure-independent term corresponding to the
symmetric potential. Terms coming from a single loop of
length nj look like lN22s

1 QsRnj . Terms coming from a
single strand of length nj are

lN22s
1 Qs

∑
Rk 2 �eiv 1 e2iv�

l2

Q
Rk21

∏
, (9)

where 1 # k # nj 2 2. Strands of length 2 contribute
no terms. Thus, strands have terms at all powers of R
less than nj 2 1, while loops only perturb at Rnj . Since
the smallest possible loop is of length 4, strands of lengths
greater than 2 are much more important to the structure of
the spectrum than loops of any length.

To calculate a perturbed spectrum, one still has to
back transform the Fourier variable v in each term.
Setting U � e2bu, the perturbed eigenvalues must satisfy
l1 1 l2 � AUe2iv 1 Beiv and l1l2 � AB�U 2 1�.
The principal contribution to the partition function is

Zprincipal �
Z

lN22s
1 QseivC dv ,

which can be computed by binomial expansions of lN22s
1 .

The only difficulty in doing so comes from odd powers
of a square-root term in the expression for l1, which
would normally lead to a power series expansion rather
than a finite binomial expansion. The approximation we
make in our computation is to replace the odd powers of
the square root with the next even number, so that we
have terminating binomial expansions at all powers. To
compute a perturbation of the form lN22s

1 QsRk , we use
R � AB�U 2 1��l2

1 and obtain

Zperturb �
Z

lN22s22k
1 QsAkBk�U 2 1�keivC dv ,

which is similar to Zprincipal except for another binomial
that can be expanded. Computing perturbations of any
order is therefore relatively straightforward.

We performed computations to check our theory with
a full enumeration of sequences and structures that was
published by Tang and coauthors [3]. These authors used
4439
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FIG. 3. Principal contribution to 36-mer spectrum with u �
20.3.

a potential (a � 22.3, b � 0, d � 21) which can be
rescaled to the perturbed potential a � 21, b � 1, d �
0, u � 20.3. Figure 3 shows a log plot of the principal
(structure-independent) contribution to the spectrum of a
36-mer. This lowest-order approximation of the density
of states bears a striking resemblance to the spectrum
calculated by full enumeration for 2D structures (Ejtehadi
[14]). A full, perturbative spectrum calculation is in good
agreement with the enumerated spectrum. Qualitative
features such as the shape and the anomalous speckeled
pattern emerge from our theory. The pattern of the
spectrum is essentially a splitting of the states of the
symmetric potential due to the perturbation u.

The expected designability (4) depends on the value
of Ec. In Fig. 4 is a plot of the change in expected
designability due to the first-order strand perturbation as
a function of Ec. Note that the logarithm of negative
numbers was taken in absolute value and plotted as a
negative value.

The change in the expected designability of the structure
due to this perturbation is negative for a large range of Ec

in the lower part of the spectrum. Since strands of lengths
greater than 2 will contribute a first-order perturbation, the
more such strands in a structure, the less designable it will
be. The most designable structures will, therefore, con-
tain the maximum number of strands of length 2. This is
the major effect determining designability; adding higher-
order terms does not change this result. The effect which
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FIG. 4. Change in expected designability due to first-order
perturbation.
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2-strands have on designability is due to the condition
u , 0. One can also perturb with u . 0 and obtain the
opposite result: 2-strands are not desirable. All of the plots
shown in Fig. 4 correspond to composition C � 0. Simi-
lar plots are obtained over a large range of C, with signifi-
cant qualitative differences for jCj close to N , i.e., as the
sequence approaches a homopolymer. Our conclusion re-
mains unchanged by these differences because at extreme
compositions we expect very few sequences to design any
given structure.

Deciding whether or not a strand of length n is better for
designability than a strand of length n 1 1 requires look-
ing at the change in expected designability due to higher
order perturbations. We find that up to strands of length 5,
the shorter the strand, the more designable the structure.
For longer lengths, differences in designability become
very small, and resolution of these differences requires pre-
cise knowledge of Ec. Researchers have conjectured that
minimal degeneracy [15] and high designability [3] lead
to highly symmetrical structures. With u , 0, it seems
plausible that the constraint of having many 2-strands ne-
cessitates symmetry in the most designable structures.

We have presented a general, analytical approach to
the protein design problem, and by applying it to the
case of two-dimensional structures, we have shown how it
effectively recognizes features that make some structures
much more designable than others. This allowed us
to identify a hierarchy of designability based on strand
lengths. Future work should generalize these results to
larger alphabets (which leads to a qth degree polynomial
in l), and to lattices of dimension three (which leads to
highly branched systems of contacts).
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data, and NIH for support.
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