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New continuous and stochastic extensions of the minority game, devised as a fundamental mo
a market of competitive agents, are introduced and studied in the context of statistical physics. Th
formulation reproduces the key features of the original model, without the need for some of its sp
assumptions and, most importantly, it demonstrates the crucial role of stochastic decision m
Furthermore, this formulation provides the exact but novel nonlinear equations for the dynamics
system.
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There is currently much interest in the statistic
physics of nonequilibrium frustrated and disorder
many-body systems [1]. Even relatively simple micr
scopic dynamical equations have been shown to lea
complex cooperative behavior. Although several of t
interesting examples are in areas traditionally view
as physics, it is growingly apparent that many furth
challenges for statistical physics have their origins
other fields such as biology [2] and economics [3].
this Letter we discuss a simple model whose origin lies
a market scenario and show that not only does it exh
interesting behavior in its own right, but also it yields a
intriguingly unusual type of stochastic microdynamics
potentially more general interest.

The model we will introduce is based on the minor
game (MG) [4], which is a simple and intuitive mod
for the behavior of a group of agents subject to the e
nomic law of supply and demand, which ensures that i
market the profitable group of buyers or sellers of a co
modity is the minority one [5]. From the perspective
statistical physics, these problems are novel example
frustrated and disordered many-body systems. Agent
not interact directly but with their collective action dete
mine a “price” which in turn affects their future behavio
Quenched disorder enters in that agents have rando
chosen but fixed strategies determining their individual
sponses to the same stimuli. Frustration enters in that,
to the global minority constraint, not all the individual in
clinations can be satisfied simultaneously. The conseq
cooperative behavior is reminiscent of that of spin glas
[6] and of the random equipartitioning problem [7], b
there are important conceptual and technical difference

The setup of the MG in the original formulation o
[4] is the following: N agents choose at each time st
whether to “buy” (0) or “sell” (1). Those agents wh
have made the minority choice win; the others lose.
order to decide what to do, agents use strategies w
prescribe an action given the set of winning outcomes
the lastm time steps. At the beginning of the game, ea
agent drawss strategies randomly and keeps them forev
As they play, the agents give points to all their strateg
according to their potential success in the past, and at e
0031-9007�99�83(21)�4429(4)$15.00
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time step they employ their currently most successful o
(i.e., the one with the highest number of points).

The most interesting macroscopic observable in the M
is the fluctuations of the excess of buyers to seller
This quantity is equivalent to the price volatility in
financial context and it is a measure of the global waste
resources by the community of the agents. We theref
want s to be as low as possible. An important featu
of the MG, observed in simulations [8], is that the
is a regime of the parameters wheres is smaller than
the valuesr which corresponds to the case where ea
agent is buying or selling randomly. Previous studi
have considered this feature from a geometrical a
phenomenological point of view [9]. Our aim, howeve
is to enable a full analytic solution.

One of the major obstacles to an analytic study
the MG in its original formulation is the presence of a
explicit time feedback via the memorym. Indeed, when
the information processed at each time step by the ag
is the true history, that is the result of the choices of th
agents in them previous steps, the dynamical evolution
the system is non-Markovian and an analytic approach
the problem is very difficult.

A step forward in the simplification of the model ha
been made in [10], where it has been shown that
explicit memory of the agents is actually irrelevant fo
the global behavior of the system: when the informati
processed by the agents at each time step is justinvented
randomly, having nothing to do with the true time serie
the relevant macroscopic observables do not change.
significance of this result is the following: the globa
information on which the individual agents act provid
a mechanism for them to interact effectively with on
another; the crucial ingredient for the volatility to b
reduced below the random value [11] appears to be
the agents must all react to thesame piece of information,
irrespective of whether this information is true or fals
[12]. This result has an important technical consequen
since the explicit time feedback introduced by the memo
disappears: the agents respond now to an instantan
random piece of information, i.e., a noise, so that t
process has become stochastic and Markovian.
© 1999 The American Physical Society 4429
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The model can be usefully simplified even further and
at the same time generalized and made more realistic. Let
us first consider the binary nature of the original MG. It
is clear that from a simulational point of view a binary
setup offers advantages of computational efficiency, but
unfortunately it is less ideally suited for an analytic
approach [13]. More specifically, if we are interested
in the analysis of time evolution, integer variables are
usually harder to handle. Moreover, the geometrical
considerations that have been made on a hypercube
of strategies of dimension 2m for the binary setup [9]
become more natural and general if the strategy space is
continuous. Finally, in the original binary formulation of
the MG there is no possibility for the agents to fine tune
their bids: each agent can choose to buy or sell, but they
cannot choose by how much. As a consequence, also the
win or loss of the agents is not related to the consistency
of their bids. This is another unrealistic feature of the
model, which can be improved. For all these reasons, we
shall now introduce a continuous formulation of the MG.

Let us define a strategy �R as a vector in the real space
�D , subject to the constraint, k �Rk �

p
D. In this way,

the space of strategies G is just a sphere and strategies
can be thought of as points on it. The next ingredient
we need is the information processed by strategies. To
this aim, we introduce a random noise �h�t�, defined as
a unit-length vector in �D , which is d correlated in time
and uniformly distributed on the unit sphere. Finally, we
define the response b� �R� of a strategy �R to the information
�h�t�, as the projection of the strategy on the information
itself,

b� �R� � �R ? �h�t� . (1)

This response is nothing else than the bid prescribed by
the particular strategy �R. The bid is now a continuous
quantity, which can be positive (buy) or negative (sell).

At the beginning of the game, each agent draws s
strategies randomly from G, with a flat distribution. All
the strategies initially have zero points and in operation
the points are updated in a manner discussed below. At
time step t, each agent i uses his/her strategy with the
highest number of points �R�

i �t�. The total bid is then

A�t� �
NX

i�1

bi�t� �
NX

i�1

�R�
i �t� ? �h�t� , (2)

We have now to update the points. This is particularly
simple in the present continuous formulation. Let us
introduce a time dependent function P� �R, t� defined on
G, which represents the points P of strategy �R at time t.
We can write a very simple and intuitive time evolution
equation for P,

P� �R, t 1 1� � P� �R, t� 2 A�t� b� �R��N , (3)

where A�t� is given by Eq. (2). A strategy �R is thus
rewarded (penalized) if its bid has an opposite (equal) sign
4430
to the total bid, as the supply-demand dynamics requires.
Now the win or the loss is proportional to the bid.

It is important to check whether the results obtained
with this continuous formulation of the MG are the same
as in the original binary model. The main observable of
interest is the variance (or volatility) s in the fluctuation
of A, s2 � limt!`

1
t

Rt01t
t0

dt0 A�t0�2. Indeed, we shall
not consider any quantity related to individual agents.
We prefer to concentrate on the global behavior of the
system, taking more the role of the market regulator
than that of a trading agent. The main features of
the MG are reproduced: first, we have checked that
the relevant scaling parameter is the reduced dimension
of the strategy space d � D�N ; second, there is a
regime of d where the variance s is smaller than the
random value sr , showing a minimum at d � dc�s�,
and, moreover, the minimum of s�d� is shallower the
higher is s [9] (see Fig. 1). It can be shown that
all the other standard features of the binary model are
reproduced in the continuous formulation.

An interesting observation is that there is no need for
�h�t� to be random at all. Indeed, the only requirement
is that it must be ergodic, spanning the whole space G,
even in a deterministic way. Moreover, if �h�t� visits
just a subspace of G of dimension D0 , D, everything
in the system proceeds as if the actual dimension was D0:
the effective dimension of the strategy space is fixed by
the dimension of the space spanned by the information.

Relations (2) and (3) constitute a closed set of equa-
tions for the dynamical evolution of P� �R, t�, whose solu-
tion, once averaged over �h and over the initial distribution
of the strategies, gives in principle an exact determination
of the behavior of the system. In practice, the presence of
the “best-strategy” rule, i.e., the fact that each agent uses

FIG. 1. Continuous formulation: The scaled variance s�
p

N
as a function of the reduced dimension D�N , at s � 2 and
s � 4. The horizontal line is the variance in the random
case. The total time t and the initial time t0 are 10 000 steps.
Average over 100 samples, N � 100.
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the strategy with the highest points, makes the handling
of these equations still difficult. From the perspective of
statistical physics it is natural to modify the deterministic
nature of the above procedure by introducing a thermal de-
scription which progressively allows stochastic deviations
from the best-strategy rule, as a temperature is raised. We
shall see that this generalization is also advantageous, both
for the performance of the system in certain regimes and
for the development of convenient analytical equations for
the dynamics. In this context the best-strategy original for-
mulation of the MG can be viewed as a zero temperature
limit of a more general model.

Hence, we introduce the thermal minority game (TMG),
defined in the following way. We allow each agent a
certain degree of stochasticity in the choice of the strategy
to use at any time step. For each agent i the probabilities
of employing his/her strategy a � 1, . . . , s is given by

pa
i �t� �

ebP� �Ra
i ,t�

Zi
, Zi �

sX
b�1

ebP� �Rb
i ,t�, (4)

where P are the points, evolving with Eq. (3). The in-
verse temperature b � 1�T is a measure of the power of
resolution of the agents: when b ! ` they are perfectly
able to distinguish which are their best strategies, while
for decreasing b they are more and more confused, until
for b � 0 they choose their strategy completely at ran-
dom. What we have defined is therefore a model which in-
terpolates between the original best-strategy MG (T � 0,
b � `) and the random case (T � `, b � 0). In the
language of game theory, when T � 0 agents play “pure”
strategies, while at T . 0 they play “mixed” ones [14].

We now consider the consequences of having intro-
duced the temperature. First, let us fix a value of d be-
longing to the worse-than-random phase of the MG (see
Fig. 1) and see what happens to the variance s when
we switch on the temperature. We know that for T � 0
we must recover the same value as in the ordinary MG,
while for T ! ` we must obtain the value sr of random
choice. But in between a very interesting thing occurs:
s�T � is not a monotonically decreasing function of T , but
there is a large intermediate temperature regime where s

is smaller than the random value sr (see Fig. 2). The
meaning of this result is the following: even if the system
is in a MG phase which is worse than random, there is
a way to significantly decrease the volatility s below the
random value sr by not always using the best strategy,
but rather allowing a certain degree of individual error.

The temperature range where the variance is smaller
than the random one is more than 2 orders of magnitude
large, meaning that almost every kind of individual
stochasticity of the agents improves the global behavior of
the system. Furthermore, if we fix d at a value belonging
to the better-than-random phase, but with d , dc, a
similar range of temperature still improves the behavior
of the system, decreasing the volatility even below the
MG value (inset of Fig. 2).
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FIG. 2. TMG: The scaled variance s�
p

N as a function of
the temperature T , at D�N � 0.1, for s � 2. In the inset we
show s�T��

p
N for D�N � 0.25.

These features can be seen also in Fig. 3, where we
plot s as a function of d at various values of the
temperature. In addition, this figure shows further effects:
(i) the improvement due to thermal noise occurs only
for d , dc; (ii) there is a crossover temperature T1 � 1,
below which temperature has very little effect for d . dc;
(iii) above T1 the optimal dc�T � moves continuously
towards zero and s�dc� increases; (iv) there is a higher
critical temperature T2 � 102 at which dc vanishes,
and for T . T2 the volatility becomes monotonically
increasing with d.

We turn now to a more formal description of the TMG.
Once we have introduced the probabilities p

a
i in Eq. (4)

we can write a dynamical equation for them. Indeed, from
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FIG. 3. TMG: The scaled variance s�
p

N as a function
of the reduced dimension D�N , at different values of the
temperature T � 2k 3 1022, for s � 2.
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Eq. (3), after taking the continuous-time limit, we have

�pa
i �t� � 2bpa

i �t�a�t�
µ

�Ra
i 2

sX
b�1

pb
i �t� �Rb

i

∂
? �h�t� ,

(5)

where the normalized total bid a�t� is given by

a�t� � N21
NX

i�1

�ri�t� ? �h�t� . (6)

Now �ri�t� is a stochastic variable, drawn at each time
t with the time dependent probabilities set �p1

i , . . . , p
s
i �.

Note the different notation: �Ra
i are the quenched strate-

gies, while �ri�t� is the particular strategy drawn at time
t by agent i from the set � �R1

i , . . . , �Rs
i � with instantaneous

probabilities �p1
i �t�, . . . , ps

i �t��. In order to better under-
stand Eq. (5), we recall that ba

i �t� � �Ra
i ? �h�t� is the bid

of strategy �Ra
i at time t [Eq. (1)] and therefore the quan-

tity wa
i �t� � 2a�t�ba

i �t� can be considered as the win of
this strategy [cf. Eq. (3)]. Hence, we can rewrite Eq. (5)
in the following more intuitive form:

�pa
i �t� � bpa

i �t� �wa
i �t� 2 �w	i� , (7)

where �w	i �
Ps

b�1 p
b
i �t�wb

i �t�. The meaning of Eq. (7)
is clear: the probability p

a
i of a particular strategy �Ra

i
increases only if the performance of that strategy is better
than the instantaneous average performance of all the
strategies belonging to the same agent i with the same
actual total bid.

Relations (5) and (6) are the exact dynamical equa-
tions for the TMG. They do not involve points nor mem-
ory, but just stochastic noise and quenched disorder, and
they are local in time. From the perspective of statistical
mechanics, this is satisfying and encouraging. However,
these equations differ fundamentally from conventional
replicator and Langevin dynamics. First, although our
equations look like replicator equations, they are not de-
terministic [15] and the Markov-propagating variables are
themselves probabilities. Second, there are two sorts of
stochastic noises, as well as quenched randomness. Third,
and more importantly, the stochastic noises enter non-
linearly, one independently for each agent via prob-
abilistic dependence on the p themselves, the other
globally and quadratically. They thus provide interesting
challenges for fundamental transfer from microscopic to
macroscopic dynamics, including an identification of the
complete set of relevant macroobservables [16] (as well
as the volatility). We shall address the problem of finding
a solution of the TMG equations in a future work.

Finally, let us note that the TMG is not only suitable
for the description of market dynamics: any natural
system where a population of individuals organizes itself
to optimize the utilization of some resources can be
described by such a model. We hope that our model will
give more insight into this kind of natural phenomena.
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