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Spin Flips and Quantum Information for Antiparallel Spins
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We consider two different ways to encode quantum information, by parallel or antiparallel pairs
of spins. We find that there is more information in the antiparallel ones. This purely quantum
mechanical effect is due to entanglement, not of the states but occurring in the course of the measuring
process. We also introduce a range of quantum information processing machines, such as spin flip and
anticloning.
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Quantum information differs from classical information
because it obeys the superposition principle and because it
can be entangled. The huge potential of quantum infor-
mation processing has renewed the interest in the founda-
tions of two of the major scientific theories of the twentieth
century: information theory and quantum mechanics [1].

Despite the very intensive recent work on quantum
information, surprising effects are continuously being dis-
covered. Here we describe yet another surprise. In a nut-
shell, we enquire whether quantum information is better
stored by two parallel spins or two antiparallel ones?

In more detail, our paper is centered around the follow-
ing problem of quantum communication. Suppose Alice
wants to communicate to Bob a space direction �n, cho-
sen at random. She may do that by one of the following
two strategies. In the first case, Alice sends Bob two spin
1�2 particles polarized along �n, i.e., j �n, �n�. When Bob re-
ceives the spins, he performs some measurement on them
and then guesses a direction �ng which has to be as close
as possible to the true direction �n. The second strategy is
almost identical to the first, with the difference that Alice
sends j �n, 2 �n�; i.e., the first spin is polarized along �n but
the second one is polarized in the opposite direction. The
question is whether these two strategies are equally good
or, if not, which is better.

To put things in a better perspective, consider first a
simpler problem. Suppose Alice wants to communicate
to Bob a space direction �n and she may do that by one
of the following two strategies. In the first case, Alice
sends Bob a single spin 1�2 particle polarized along �n, i.e.,
j �n�. The second strategy is identical to the first, with the
difference that when Alice wants to communicate to Bob
the direction n she sends him a single spin 1�2 particle
polarized in the opposite direction, i.e., j2 �n�. Which of
these two strategies is better?

If the particles would be classical spins then, obviously,
both strategies would be equally good, as an arrow
defines equally well both the direction in which it points
and the opposite direction. Is the quantum situation the
same?
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First, we should note that in general, by sending a single
spin 1�2 particle, Alice cannot communicate to Bob the
direction �n with absolute precision. Nevertheless, it is
still obviously true that the two strategies are equally good.
Indeed, all Bob has to do in the second case is to perform
exactly the same measurements as he would do in the first
case, only that when his results are such that in the first case
he would guess �ng, in the second case he guesses 2 �ng.

We are thus tempted to conjecture the following.
Conjecture: Similar to the classical case, for the purpose

of defining an arbitrary direction �n, a quantum mechanical
spin polarized along �n is as good as a spin polarized in the
opposite direction. In particular, the two two-spin states
j �n, �n� and j �n, 2 �n� are equally good.

Surprisingly, however, as we show here, this conjecture
is not true.

The main reason behind this effect is, once more, en-
tanglement. Here entanglement does not refer to the two
spins—whether parallel or antiparallel they are always
in a direct product state—but to the eigenvectors of the
optimal measurement. (Indeed, as Massar and Popescu
demonstrated [2] the optimal measurement on parallel
spins requires entanglement.)

This result has also led us to many new questions. For
example, we were led to consider a universal quantum
spin-flip (UQSF) machine, a machine that flips an un-
known spin as well as possible, and an anticloning ma-
chine, i.e., a machine which takes as input N parallel spins,
polarized in an unknown direction, and generates some
supplementary spins polarized in the opposite direction.
We also point out the relation between spin flip and partial
transpose.

I. Optimal fidelity for parallel and antiparallel spins.—
In the previous section we presented our main problem as a
quantum communication problem. We can present it also
in a different way, which brings it closer to a well-known
problem. Indeed, we can completely dispense with Alice
and consider that there is a source which emits pairs of
parallel (or antiparallel) spins, and Bob’s task is to identify
the state as well as possible.
© 1999 The American Physical Society
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For concreteness, let us define Bob’s measure of success
as the fidelity,
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where �n �ng is the scalar product in between the true and
the guessed directions, the integral is over the different
directions �n, and d �n represents the a priori probability
that a state associated to the direction �n, i.e., j �n, �n� or
j �n, 2 �n�, respectively, is emitted by the source; P�g j �n� is
the probability of guessing �ng when the true direction is �n.
In other words, for each trial Bob gets a score which is a
(linear) function of the scalar product between the true and
the guessed direction, and the final score is the average of
the individual scores.

When the different directions �n are randomly and uni-
formly distributed over the unit sphere, an optimal mea-
surement for pairs of parallel spins c � j �n, �n� has been
found by Massar and Popescu [2]. Bob has to measure an
operator A whose eigenvectors fj, j � 1 . . . 4 are
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where jc2� denotes the singlet state and the Bloch vectors
�nj point to the four vertices of the tetrahedron:
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(The phases used in the definition of j �nj� are such that the
four states fj are mutually orthogonal.) The exact values
of the eigenvalues corresponding to the above eigenvectors
are irrelevant; all that is important is that they are different
from each other, so that each eigenvector can be unam-
biguously associated to a different outcome of the mea-
surement. If the measurement results correspond to fj,
then the guessed direction is �nj . The corresponding opti-
mal fidelity is 3�4 [2].

A related case is when the directions �n are a priori
on the vertices of the tetrahedron, with equal probability
1�4. Then the above measurement provides a fidelity of
5�6 � 0.833, conjectured to be optimal.

Let us now consider pairs of antiparallel spins, jc� �
j �n, 2 �n�, and the measurement whose eigenstates are

uj � aj �nj , 2 �nj� 2 b
X
kfij

j �nk , 2 �nk� (4)

with a � 13��6
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2 � � 0.129. The corresponding fi-
delity for uniformly distributed �n is F � �5
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3 2 1�2� � 0.789, and for �n lying on the tetrahe-
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3 2 1�2� � 0.955. In both
cases the fidelity obtained for pairs of antiparallel spins is
larger than for pairs of parallel spins.

II. Spin flips.—As we have seen in the previous
section, parallel and antiparallel spins are not equivalent.
Let us try to understand why.

That there could be any difference between communi-
cating a direction by two parallel spins or two antiparallel
spins seems, at first sight, extremely surprising. After all,
by simply flipping one of the spins we could change one
case into the other. For example, if Bob knows that Alice
indicates the direction by two antiparallel spins he has only
to flip the second spin and then apply all the measurements
as in the case in which Alice sends from the beginning par-
allel spins. Thus, apparently, the two methods are bound
to be equally good.

The problem is that one cannot flip a spin of unknown
polarization. Indeed, it is easy to see that the flip operator
V defined as

V j �n� � j2 �n� (5)

is not unitary but antiunitary. Thus there is no physical
operation which could implement such a transformation.

But then a couple of question arise. First, why is it still
the case that a single spin polarized along �n defines the
direction as well as a single spin polarized in the opposite
direction?

What happens is that although Bob cannot implement
an active transformation, i.e., cannot flip the spin, he can
implement a passive transformation, that is, he can flip
his measuring devices. Indeed, there is no problem for
Bob in flipping all his Stern-Gerlach apparatuses, or, even
simpler than that, to merely rename the outputs of each
Stern-Gerlach “up” ! down and “down” ! up.

But given the above, why can not Bob solve the prob-
lem of two spins in the same way, just by performing a
passive transformation on the apparatuses used to measure
the second spin? The problem is the entanglement. In-
deed, if the optimal strategy for finding the polarization
direction would involve separate measurements on the two
spins, then two parallel spins would be equivalent to two
antiparallel spins. (This would be true even if which mea-
surement is to be performed on the second spin depends on
the result of the measurement on the first spin.) But, as
shown in the previous section, the optimal measurement is
not a measurement performed separately on the two spins
but a measurement that acts on both spins simultaneously,
that is, the measurement of an operator whose eigenstates
are entangled states of the two spins. For such a measure-
ment there is no way of associating different parts of the
measuring device with the different spins, and thus there
is no way to make a passive flip associated to the sec-
ond spin. Consequently there is no way, neither active nor
passive to implement an equivalence between the parallel
and antiparallel spin cases.
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This result illustrates once more that entanglement can
produce results “classically impossible,” similar to Bell
inequality and to nonlocality without entanglement [2,3].

III. Spin flips and the partial transpose of bipartite den-
sity matrices.—We have claimed in the previous section
that when we perform a measurement of an operator whose
eigenstates are entangled states of the two spins, there is
no way of making a passive flip associated with the second
spin. We comment in more detail about this point.

Physically it is clear that in the case of a measuring de-
vice corresponding to an operator whose eigenstates are
entangled states of the two spins, we cannot identify one
part of the apparatus as acting solely on one spin and an-
other part of the apparatus as acting on the second spin.
Thus we cannot simply isolate a part of the measuring de-
vice and rename its outcome. But perhaps one could make
such a passive transformation at a mathematical level, that
is, in the mathematical description of the operator associ-
ated to the measurement and then physically construct an
apparatus which corresponds to the new operator.

The optimal measurement on two parallel spins is de-
scribed by a nondegenerate operator whose eigenstates
jfj� are given by (2) and (3). It is convenient to consider
the projectors Pj � jfj� �fjj associated with the eigen-
states. As is well known, any unit-trace Hermitian opera-
tor, and, in particular, any projectors, can be written as

Pj �
1
4

�I 1 �aj �s�1� 1 �bj �s�2� 1 R
j
k,ls

�1�
k s

�2�
l � (6)

with some appropriate coefficients �aj , �bj , and R
j
k,l . (The

upper indexes on the spin operators mean “particle 1” or
“2.”) Why then could we not simply make the passive
spin flip by considering a measurement described by the
projectors

P̃j �
1
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�I 1 �aj �s�1� 2 �bj �s�2� 2 R
j
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�1�
k s

�2�
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obtained by the flip of the operators associated second
spin, �s�2� ! 2 �s�2�? The reason is that the transformed
operators P̃j are no longer projectors. Indeed, each
projection operator Pj could also be viewed as a density
matrix rj � Pj � jfj� �fjj. The passive spin flip (6) !
(7) is nothing more that the partial transpose of the density
matrices rj with respect to the second spin. But each
density matrix rj is nonseparable (because they describe
the entangled state jF�). But according to the well-known
result of the Horodeckis [4,5] the partial transpose of
a nonseparable density matrix of two spin 1�2 particles
has a negative eigenvalue and thus it cannot represent a
projector anymore. Obviously, however, if the optimal
measurement would have consisted of independent mea-
surements on the two spins, each projector would have
been a direct product density matrix and the spin flip
would have transformed them into new projectors and
thus led to a valid new measurement.

IV. Spin flips, entropy, and the global structure of the
set of states.—There is yet another surprise in the fact that
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antiparallel spins can be better distinguished than parallel
ones. Consider the two sets of states, that of parallel spins
and that of antiparallel spins. The distance in between any
two states in the first set is equal to the distance in between
the corresponding pair of states in the second set. That is,

j� �n, �n j �m, �m�j2 � j� �n, 2 �n j �m, 2 �m�j2. (8)

Nevertheless, as a whole, the antiparallel spin states are
farer apart than the parallel ones. Indeed, the antiparallel
spin states span the entire 4-dimensional Hilbert space of
the two spin 1

2 , while the parallel spin states span only
the 3-dimensional subspace of symmetric states. This is
similar to a three spin example discovered by Jozsa and
Schlienz [6].

Furthermore, the ensembles of parallel and of antiparal-
lel spins in random directions have quantum entropies of
log�3� and log�12�, respectively; that is, the ensemble of
antiparallel pairs has a larger entropy. One should note,
however, that in general there is no relation between the en-
tropy of an ensemble and the fidelity with which the states
can be recognized. Indeed a larger entropy does not neces-
sarily imply higher fidelity, nor does higher fidelity imply
larger entropy.

V. The universal quantum spin-flip and anticloning
machines.—As we have already noted in Sec. II, a perfect
universal quantum spin-flip machine, i.e., a machine that
would reverse any spin 1

2 state j �n� ! j2 �n� is impossible—
it would require an antiunitary transformation. However,
following the lesson of the cloning machine [7], let us ask
how well one could approximate such a machine.

Analog to an optimal universal cloning machine, let us
define an optimal universal quantum spin-flip machine.
By definition, a UQSF is a machine which acting on a spin
1�2 particle implements the transformation

j �n� ! r� �n� (9)

such that r� �n� is as close as possible to j2 �n�. For
concreteness, we define “as close as possible” to mean
“according to the usual fidelity” F �

R
d �n�2 �njr� �n� j2 �n�.

Furthermore, to be “universal” we require that the fidelity
is independent of the initial polarization of the spin, that
is, that all states are flipped equally well. [Obviously, in
order to be able to implement the transformation (9) which
is nonunitary, the UQSF machine is allowed to entangle
the spin with an ancilla.]

Following the technique of [8], developed for optimal
eavesdropping in the six state protocol of quantum cryp-
tography, one finds that the fidelity of the optimal quan-
tum spin-flip machine is of 2�3 (which appears as the
maximal disturbance Eve can introduce in the quantum
channel).

One simple way to implement this optimal spin flip
consists in first measuring the spin in an arbitrary direc-
tion, then producing a spin pointing in the direction oppo-
site to the measurement result.
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Surprisingly enough, although the original goal was to
flip a single spin (the input spin) the optimal UQSF ma-
chine can produce additional flipped spins at no extra cost.
This follows from the fact that the optimal UQSF pro-
vides classical information which then can be used to pre-
pare as many flipped spins as we want. This result is
surprising because one is tempted to imagine that if we
want only to flip a single spin we could do it with much
better fidelity if we do not attempt to extract classical in-
formation from it. At least this is the lesson of many
other quantum information processing procedures, such as
cloning, teleportation, data compression, quantum compu-
tation, etc. In all these cases quantum information can be
processed with much better results if we keep it all the time
in quantum form rather than extracting some classical in-
formation from it and processing this classical information.
The deep reason why spin flipping is essentially a classical
operation is an interesting but yet open question.

One can also consider other interesting machines, for ex-
ample, machines that take as input two parallel spins j �n, �n�
and the output is as close as possible either to j �n, 2 �n�, or to
j2 �n�, or to j �n, �n, 2 �n�. Another interesting open question
is which operation can be produced with higher fidelity:
from two parallel spins to antiparallel ones, or vice versa.

VI. Spin flips and quantum optics.—Entanglement is
closely connected to the mathematics of partial transpose
r

T
ij,kl � ril,kj: a 2-spin 1

2 (mixed) state is separable if and
only if its partial transpose has non-negative eigenvalues
[4,5]. Interestingly, partial transposes can be seen as a
representation of spin flips. Indeed, the partial transpose
of a product operator reads

�a0 1 �a �s� ≠ �b0 1 �b �s� ! �a0 1 �a �s�
≠ �b0 1 �b �s 2 2bzsz�

(10)

(where the sk are the usual Pauli matrices); hence, a par-
tial transpose is a reflection of the second spin through
the x-z plane (the plane depends on the basis, as partial
transpose is basis dependent). Note that this is a practi-
cal way of representing the polarization of a photon re-
flected by a mirror: the upper and lower hemispheres of
the Poincaré sphere are exchanged, corresponding to the
change of right handed and left handed elliptic polariza-
tion states. To complete the connection with spin flips,
add after the reflection a p rotation around the axes or-
thogonal to the reflection plane (like the Faraday rota-
tor in Faraday mirrors [9]), this flips the second spin.
Now, the proof that perfect UQSF machines do not ex-
ist can be reformulated: a perfect UQSF machine would
turn entangled states into states with negative eigenvalues.
Physically, the use of a mirror acting only on the sec-
ond photon is of course still possible, but one must note
that mirrors change right handed reference frames into left
handed ones. This is acceptable as long as one can de-
scribe the two photons separately, but leads to erroneous
predictions if applied to entangled photons.

VII. Conclusion.—We have proved that there is more
information about a random space direction �n in a pair of
antiparallel spins j �n, 2 �n� than in a pair of parallel spins
j �n, �n�. This demonstrates again the role played by entan-
glement in quantum information processing: not a source
of paradoxes, but a means of performing tasks which are
impossible classically. It also draws attention to the global
structure of the state space of combined systems. Related
questions concern the optimal quantum spin-flip machine
and the optimal quantum machine that turns parallel to an-
tiparallel pairs of spins.
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