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We describe a numerical implementation of self-consistent mean field theory for block copoly
that requires no assumption of the mesophase symmetry. The method is amenable to massively
screening of self-assembly in complex block copolymer systems, characterized by high-dimen
parameter spaces. We illustrate the method by screening for novel mesophases in linearABCA
tetrablock copolymers; several previously unreported mesophases have been identified. Exten
multicomponent systems, such as blends of block copolymers and homopolymers, is straightforw
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Computational materials discovery and design has lo
been the dream of materials technologists. To date, ho
ever, the discovery phase for most new materials
driven largely by experimental programs, with theore
cians struggling to explain structures and phenomena a
they have been observed in the laboratory. Among s
materials, block copolymers are unique in that a qua
titative theory is available for relating molecular arch
tecture and composition to equilibrium self-assembly [1
This theory, a type of self-consistent mean field theo
(SCMFT), has been extraordinarily successful in helpi
to explain the complex mesophases experimentally
served in block copolymers and polymer alloys [2].

SCMFT for polymer melts has its origins in work by
Edwards in the 1960s and was explicitly adapted to tr
block copolymer self-assembly by Helfand and others
the subsequent decades [3]. The current state-of-the
numerical approach to solving the SCMFT equations
due to Matsen and Schick and involves expanding
spatially dependent fields in a finite set of basis fun
tions with anassumed mesophase symmetry [2,4]. While
the Matsen-Schick approach is numerically efficient a
allows high precision calculations of free energies a
phase diagrams, the requirement of a symmetry assu
tion makes it unsuitable for the discovery of previous
unknown mesophases in complex copolymer melts. In
present Letter, we describe an alternative numerical
proach to solving the SCMFT equations that lends its
to combinatorial screening of new mesophases in blo
copolymer systems.

To explain the need for such a tool, it is helpful t
review the rapid expansion of parameter space and ri
ness of self-assembly behavior that is observed as bl
copolymers are composed with increasing numbers
chemically distinct blocks (polymerized sequences of li
monomers) [1]. The equilibrium phase behavior of simp
AB diblock copolymers is dictated in SCMFT by two
parameters:hAB � xABN, where xAB is a binary inter-
action parameter (“Flory parameter”) between dissimi
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monomers andN is the overall number of monomers
per chain, andfA, the volume fraction of theA block of
each molecule. In this two-dimensional parameter spa
four spatially periodic mesophases (lamellae, hexagona
packed cylinders, bcc spheres, and the “gyroid” pha
2Ia3̄d space group) have been experimentally observ
and theoretically confirmed via the Matsen-Schick alg
rithm [5]. For the case of linear polymers with thre
chemically distinct blocks, i.e.,ABC triblocks, the parame-
ter space for SCMFT is five-dimensional (hAB, hAC , hBC,
fA, fB) and over 13 distinct mesophases have been exp
mentally identified to date [1,6]. By switching from the
linear ABC architecture to theABC star architecture, ad-
ditional fascinating mesophase symmetries have rece
been identified [7]. Evidently, as the number of distin
blocks and possibilities for block connectivity grow, ther
is a dramatic expansion in the number and types of se
assembled mesophases, as well as explosive growth in
parameter space that must be explored to unearth th
phases. A theoretical tool for “combinatorial screenin
of self-assembly in such complex systems would eviden
be very useful.

Here we present an algorithm for implementin
SCMFT that can serve as such a screening tool. F
concreteness, we restrict attention to a linearABCDE · · ·
multiblock melt, where each chain hasM distinct blocks
and a total ofN monomers, and adopt the notation o
Matsen and Schick [4]. In mean field theory, each su
chain has independent statistics in average chem
potential fields,wK �r�, conjugate to the volume fraction
fields, fK�r�, of block speciesK. The free energy per
chain (in units ofkBT ) is given by [4]

F � 2ln�V21
Z

dr q�r, 1��

1 �1��2V ��
X
Kfi

X
L

hKL

Z
dr fKfL

2 �1�V �
X
K

Z
dr wKfK . (1)
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The function q�r, s� is the statistical weight that a segment
of a chain, originating from the free end of the A block
and with contour length s, has at its terminus at point r.
The contour variable s is scaled by N and lengths have
been scaled by the unperturbed radius of gyration of the
chain, Rg. V is the system volume expressed in these
units and q�r, 1� is the statistical weight of a constrained
end of an entire chain.

The above free energy expression is to be mini-
mized subject to the constraint of local incompressibility,P

K fK�r� � 1, and the constraint that q�r, s� satisfies
a dynamical trajectory given by the solution of ≠sq �
=2q 2 w�r, s�q, q�r, 0� � 1. The latter constraint is a
Feynman-Kac formula for the single chain path integral;
the function w�r, s� is defined as wK �r�, for all s on blocks
of species K . Imposition of these constraints leads natu-
rally to two Lagrange multiplier fields: a pressure field
P�r� and a conjugate statistical weight qy�r, s� satisfy-
ing 2≠sqy � =2qy 2 w�r, s�qy, qy�r, 1� � 1. qy�r, s�
gives the statistical weight of a (conjugate) segment of
chain that has its terminal end at position r and contour lo-
cation s, and the other end (s � 1) distributed throughout
the entire volume. Minimization with respect to fK�r�
and wK �r� leads to the following equations that complete
the SCMFT set:

wK �r� �
X

LfiK

hKLfL�r� 1 P�r� , (2)

fK�r� � V
Z

ds q�r, s�qy�r, s�
¡ ∑Z

dr q�r, 1�
∏

, (3)

where the chain contour integral on s is restricted to
blocks of species K .

Matsen and Schick [4] solve the above equations by us-
ing a restricted Fourier basis appropriate for an assumed
mesophase symmetry. Our approach is to search for low
free energy solutions of the equations by solving the equa-
tions in real space within a box with periodic boundary
conditions. So as not to bias the symmetry of patterns that
emerge, this optimization is carried out starting with ran-
domly generated potential fields. While other groups [8,9]
also employ a real-space approach to SCMFT, our goals
are rather different. In particular, we consider bulk melts,
rather than thin films. Moreover, the algorithm is not in-
tended to mimick real polymer dynamics, but is simply
an artifice to evolve a system as rapidly as possible to a
free energy minimum satisfying the above constraints (in-
cluding rigorous incompressibility). We expect that this
will prove to be a particularly efficient methodology for
screening of block copolymer self-assembly.

A sketch of our Picard-type algorithm is as follows.
First, an initial guess for the wK �r� is constructed with a
random number generator. Equation (2) is then combined
with the condition of incompressibility to solve for the
fields fK�r� and P�r�. Using a Crank-Nicholson scheme,
the diffusion equations are then integrated to obtain q
and qy for 0 # s # 1. Next, the right-hand side of
4318
Eq. (3) is evaluated to obtain new expressions for the
species volume fractions. The volume fractions at the
next iteration are obtained by means of a linear mix of
new and old solutions. The final step is to update the
potential fields using Eq. (2) and subsequently update the
pressure field by combining Eq. (2) with the condition
of incompressibility. These steps are repeated until the
free energy changes at each iteration are reduced to
1024, or until the pattern emerging in the simulation
box can be clearly identified. The structures so obtained
correspond to either stable or metastable equilibrium.
In principle, one can assess the relative stability of
competing mesophases by comparing their free energies.
Each independent run, starting from a different random
initial condition, can be viewed as a quench. Quenches
in different regions of parameter space are statistically
independent and are amenable to parallel computation.

As an example, we show in Fig. 1 results from two
independent quenches in a study of AB diblock copoly-
mer melts performed with hAB � 16. The simulation
box was a two-dimensional square 128 3 128 grid with
side length L � V 1�2 � 10 (in units of Rg). In such
a two-dimensional calculation it is possible to resolve
mesophases with composition variations in up to two direc-
tions; this clearly excludes intrinsically three-dimensional
mesophases such as the cubic bcc and gyroid structures.
If the value of L is too small, the mesophase emerging
in the box is highly constrained by the periodic cell. On
the other hand, excessively large values of L slow the
equilibration process as defects must be annealed out over
large distances. In practice, L is initially chosen to be a
small multiple of Rg, e.g., L � 5, and is then increased
until the changes in free energy are below some thresh-
old. The volume fraction of the A block of each mole-
cule was set to fA � 0.5 for the left column of Fig. 1 and
fA � 0.67 for the right column. The three configurations
displayed in each column illustrate how the A-monomer
volume fraction changes in our algorithm as a minimum
of the free energy is approached. The bottom row of
the figure shows the final configuration obtained in each
case. These are consistent with the lamellar and cylindri-
cal phases expected from the phase diagram of Matsen and
Schick [4]. In fact, we have confirmed that the above al-
gorithm, when implemented in three dimensions for AB
diblock copolymers, leads to equilibrated lamellar, cylin-
drical, cubic, and gyroid mesophases at compositions and
hAB values consistent with the Matsen-Schick phase di-
agram. In a few instances, we arrived at the perforated
lamellar phase, which is known to be metastable [4,5,10],
but is nonetheless experimentally observed [11]. Repeti-
tion of these quenches using the same parameters, but dif-
ferent random initial conditions, confirmed that this phase
was not robust.

As a first application of our approach to combina-
torial screening of mesophases in a new system, we
have examined linear ABCA tetrablock copolymers. This
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FIG. 1. Microphase separation in a two-dimensional melt of
AB diblock copolymers with hAB � 16 and fA � 0.5 (left
column) and fA � 0.67 (right column). In both cases, the
algorithm described in the text leads to the proper equilibrium
mesophase (lamellar and cylindrical phases, respectively).
Regions rich in A monomers are shown in black.

architecture differs from the well-studied ABC architec-
ture in that A is covalently bonded to both B and C, which
produces an additional source of frustration not present in
ABC melts. Thus, we might expect to see new types of
self-assembly. Practical interest in such systems could in-
volve applications as thermoplastic elastomers, where A is
a glassy or crystalline hard polymer, and B and C are rub-
bery blocks capable of microphase separation. The pos-
sibility of complex geometrical structuring of the rubbery
blocks in such materials could lead to novel stress-strain
characteristics.

Even with the restriction of equal-volume A blocks, the
parameter space of an ABCA melt in SCMFT is five-
dimensional (hAB, hAC , hBC , fB, fC), so exhaustive ex-
ploration of this space for new types of self-assembly is a
formidable task. To reduce the labor involved, we have
restricted our screening to two-dimensional patterns (spa-
tial variation in only two directions) and have set hAB �
hAC � hBC . Undoubtedly, these restrictions have caused
us to miss a number of interesting mesophase struc-
tures. Nevertheless, our screening, which consisted of 500
independent quenches distributed throughout the above
parameter space, has unearthed several new mesophase
structures.

We start with a description of the various types
of self-assembly we have encountered by varying fA

while keeping fB � fC . At small values of fA, the
tetrablocks microphase separate into B-rich and C-rich
lamellae. A monomers from the first (last) block of the
ABCA architecture locate preferentially inside the B-rich
(C-rich) phase. The overall density of A monomers,
however, is largest in the interfacial region. In fact,
when fA is increased above approximately 0.25, small
A decorations form at regular intervals along the B-C
interfaces [Fig. 2(a)]. Their location along neighboring
interfaces is staggered, leading to a pattern with p2mg
symmetry. At nearly equal volume fractions of the
three species (fA � 0.34, fB,C � 0.33), the melt self-
assembles into a hexagonal phase [Fig. 2(b)]. The same
morphology was recently observed in three-dimensional
Monte Carlo simulations of ABC star-block copolymers
[12], but has not been previously hypothesized for the
ABCA architecture or experimentally observed in any
copolymer system to date. It is interesting to note
that for the same parameter values, our simulations of

FIG. 2. Examples of mesophases obtained by solving the
SCMFT equations for ABCA tetrablock melts on a 128 3 128
square lattice. Regions rich in A, B, or C monomers are
shown in grey, black, and white, respectively. In all four
cases, we used hAB � hAC � hBC � 35 and replicated the
final pattern 4 times to form the configurations shown above.
(a) fA � 0.26, fB,C � 0.37, and L � 7, where L is the length
of each side of the simulation box in units of Rg. (b) fA �
0.34, fB,C � 0.33, and L � 5. (c) fA � 0.48, fB,C � 0.26,
and L � 5. (d) fA � 0.24, fB � 0.56, fC � 0.20, and L � 7.
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ABC linear triblocks readily produced the “ three-color”
(ABCCBA · · ·) lamellar phase, which has been observed
in a number of experiments on ABC systems [6]. The
ABCA architecture in our experience is apparently much
less inclined to form three-color lamellae.

For 0.4 , fA , 0.6 and fB � fC , we have observed
a mesophase that consists of long, parallel chains of
alternating B-rich and C-rich “beads” embedded in a
matrix of A [Fig. 2(c)]. Beads rich in one species on
one chain face beads rich in the other on the neighboring
chains. We are not aware of any previous predictions or
observation of this “bead phase” (plane group c2mm) in
block copolymers of any architecture. Finally, for values
of fA in the interval 0.6 , fA , 0.74 and equal fB,C ,
B and C monomers uniformly mix inside small disks
arranged on a triangular lattice within the continuous A
matrix. This phase is the analog of the familiar hexagonal
B-cylinder phase in AB diblock copolymers.

Quenches in regions of parameter space with fB fi fC

have yielded one additional interesting microstructure
that is shown in Fig. 2(d) (fA � 0.24, fB � 0.56, fC �
0.20). This is a core-shell cylindrical phase similar to
that observed in ABC linear triblocks. In the present
case, however, the A-rich phase at the center of each disk
consists mainly of A monomers from the last block of the
ABCA chains. The density of A monomers from the first
block is largest just outside the C-rich annular regions and
slowly decays into the B-rich matrix. (These A monomers
are never in the majority anywhere in the structure, but are
mixed into the black B region.) The disks in Fig. 2(d)
are slightly elongated in the vertical direction due to the
constraints of the periodic box with L � 7. We have
confirmed that quenches with larger values of L restore a
circular shape to the disks, but at the cost of dramatically
increased run time to anneal out defects in the structure.

In summary, we have developed a real-space approach
to implementing polymer SCMFT that is particularly well
suited to screening for new types of self-assembly in com-
plex block copolymer systems. By performing a large
number of parallel quenches distributed throughout the
parameter space of interest, it is possible to construct a set
of candidate spatially periodic mesophases that may rep-
resent either stable or metastable structures. Given this
candidate set of structures, the Matsen-Schick algorithm
is then ideally suited for the accurate calculation of free
energies and construction of phase diagrams. We believe
that this tandem approach to implementing SCMFT will
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prove to be extremely effective in sorting out the com-
plexities of self-assembly in multiple-color block copoly-
mer systems and invaluable in guiding experimentation.
In closing, we emphasize that the approach is very gen-
eral and can be easily extended to essentially any block
architecture and to include additional components, such
as solvents or homopolymers.
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