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Bilateral Symmetry Breaking in a Nonlinear Fabry-Pérot Cavity
Exhibiting Optical Tristability
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We show the existence of a region in the parameter space that defines the field dynamics in a Fabry-
Pérot cylindrical cavity, where three output stable stationary states of the light are possible for a given
localized incident field. Two of these states do not preserve the bilateral (i.e., left-right) symmetry
of the entire system. These broken-symmetry states are the high-transmission nonlinear modes of the
system. We also discuss how to excite these states.

PACS numbers: 42.65.Pc
Symmetries are at the backbone of physical theories. In
Hamiltonian systems, symmetries are related to conserved
quantities through Noether’s theorem, and they provide us
with a powerful tool to understand Nature. The left-right
symmetry of the fundamental laws of Nature (apart from
the nonconservation of parity for the weak interaction) is a
well-known fact [1]. In particular, the electromagnetic in-
teraction possesses this symmetry at the fundamental level.
However, there is no reason why an invariance of the evo-
lution equations should be an invariance of the station-
ary states of the system [2]. In fact, most of the time
the state of really big systems does not have the symmetry
of the laws which govern it [3]. Here in a simple symmet-
rical dynamical system with a symmetric localized driv-
ing source, we have found an example of the dynamical
breaking of a discrete fundamental symmetry of the sys-
tem, namely, its left-right, or bilateral, symmetry.

Shortly after the proposal and demonstration of nondis-
sipative optical bistability using Fabry-Pérot cavities [4,5],
the effect on the bistable behavior of the transverse field
amplitude profile of the fundamental mode of the cav-
ity was taken into account [6]. Nonlinearity and diffrac-
tion can excite several transverse modes of the cavity, and
this will considerably modify the dynamics of the light
[7]. For high finesse cavities, when only one longitudi-
nal mode of the cavity is excited, the dynamics can be
described with a single scalar wave equation [8,9], which
facilitates numerical analysis and physical interpretation.
In this paper, we restrict ourselves to this regime. Gener-
ally speaking, a great variety of light dynamics can be
observed [10,11]. Concerning bistability, it has been
shown that diffraction gives rise to transverse instability
in one of the two branches of the plane wave bistable
regime [8]. This raises the question if bistability can ex-
ist at all when important transverse effects are taken into
account. Some families of stationary solutions have been
found [12], but their role in the dynamics of the light has
not been discussed. Here we consider new families of sta-
tionary solutions with broken symmetry which are rele-
vant to the dynamics of the light that we numerically
observed, and we discuss their stability and excitation.
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We consider a cylindrical Fabry-Pérot cavity [13]
filled with a self-focusing Kerr nonlinear medium,
n � n0 1 n2jEj2, where n is the refractive index of the
medium, n0 is the low-power refractive index, which is
taken to be n0 � 1, n2 . 0 is the nonlinear coefficient,
and E is the electric field inside the cavity (see Fig. 1).
The cavity is driven by a Gaussian beam Ei with beam
widths in the transverse x and y directions given by
wx and wy (1�e2 half-width intensity). The concave
mirror in the y direction has a radius of curvature R,
and the width wy is chosen so that the incident beam
matches the linear Hermite-Gaussian mode of the cav-
ity in the y direction. Both mirrors have very high
reflectivity R, and the incident beam is assumed to
have a Rayleigh range in the x direction zx � pw2

x�l0
much larger than the cavity length L. l0 is the light
wavelength in vacuum. Under these conditions, only
a single longitudinal mode of the cavity is excited
and the electric field E has the structure E�x, y, z, t� ~

C�x, t� exp�2y2�w2
y � sin�kcz� exp�2ivt� 1 c.c., where

C is the normalized complex field envelope inside the
cavity, v is the frequency of the input beam Ei , t is the
time, and kc is the resonance wave number of the linear
cavity. Only one transverse mode in the y dimension
is selected out by the use of the cylindrical cavity. The
field transmitted by the system is proportional to C [14],

x z

y

Ei

FIG. 1. Geometry of the cylindrical Fabry-Pérot cavity.
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which obeys the driven Ginzburg-Landau equation [8,9]

≠C

≠t
�

i
2

≠2C

≠j2 2 iuC 1 ijCj2C 1 G�Cd 2 C� ,

(1)

where Cd is the driving field, which is proportional
to the incident field, j � x�wx is the normalized x
coordinate, and t � t�t0 is the normalized time. The
normalizing factor t0 is given by t0 � 2zx�c, where c is
the velocity of light in vacuum. The normalized cavity
detuning u is given by u � 2Dkzx , where Dk � kc 2 k
and the wave number k is k � n0v�c. The amplitude
decay rate G is G � �T 1 aL�zx�L, where T � 1 2

R is the transmissivity of each mirror, and a is the
loss coefficient of the material filling the cavity. The
normalized amplitude q of the driving field �q � Cd�0��,
the normalized cavity detuning u, and the amplitude decay
rate G define the parameter space that determines the
dynamics of the light in the Fabry-Pérot etalon.

Let us consider a laser light that excites 85Rb atoms in
their D2 transition near l0 � 780 nm to provide a reso-
nantly enhanced optical nonlinearity. The mirror reflec-
tivity is R � 0.995 and the cavity length L � 2 mm.
The intracavity loss is a � 0.05 dB�cm. A beamwidth
wx � 100 mm corresponds to G � 0.15, and u � 0.4 cor-
responds to a cavity frequency detuning Df � 240 MHz.
The Rayleigh range in the x direction is zx � 40 mm.
The mode beam waist in the y direction [15] is w2

y �
�l0L�p�

p
g��1 2 g�, where g � 1 2 L�R. For g �

0.64, we obtain wy � 26 mm, which can be achieved
through an appropriate cylindrical mode-matching lens.
The maximum nonlinear refractive index change Dn is
given by Dn � l0jCj2�4pzxA, where A � 3�2

p
8 is a

mode overlap factor given by the field profile in the y and
z directions. For the parameters considered here, C � 1
corresponds to Dn � 3 3 1026.

The time evolution of the field C, as described by
Eq. (1), results from the interplay between different pro-
cesses: transverse effects arising from the diffraction (sec-
ond derivative) term in the wave equation, self-focusing
due to the nonlinearity, energy input due to the driving
field, and energy loss due to the finite transmissivity
of both mirrors. The actual values of the parameters
�G, u, q	, will determine the influence on light dynam-
ics of every one of the above mentioned processes. For
large beamwidth, we have G, u ¿ 1, so transverse ef-
fects are expected to be negligible in this limit. For small
beamwidth, but large enough in order to be in the regime
of validity of Eq. (1), the different competing processes
depicted above are comparable. This is the regime we are
considering in this paper. We will see that there is a re-
gion in parameter space where three possible output states
with different broken and unbroken symmetries can be
excited, and, under appropriate circumstances, all stable
output states can be excited. In all our considerations we
will restrict ourselves to the case u . 0, corresponding to
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a red detuning of the laser from the cavity resonance. Fi-
nally, we point out that the total energy inside the cavity
and the transmitted beam power are both proportional to
I �

R`

2` jCj2 dj, and this varies at a rate

dI
dt

� 22G
Z `

2`
jCj2 dj 1 G

Z `

2`
�C�Cd 1 CC�

d� dj .

(2)

Thus Eq. (1) corresponds to a nonconservative system.
Let us first review the main results for the stability of

plane wave solutions against transverse perturbations [8].
In the plane wave limit, when the second derivative of
the field in Eq. (1) is neglected, the curve jC0j 2 Cd ,
where C0 are the stationary plane wave solutions, is single
valued for u ,

p
3 G, whereas for u .

p
3 G, it is S

shaped and can lead to bistability. Stationary plane wave
solutions are unstable against transverse perturbation when
both conditions jC0j

2 . G and jC0j
2 . u�2 are fulfilled.

Since the upper branch of the S-shaped curve jC0j 2 Cd

always begins at jC0j
2 . 2u�3, it turns out that the upper

branch is always unstable against transverse perturbation.
This raises the question whether or not bistability exists at
all when one takes into account the transverse structure of
the beams.

For that purpose, we first look for stationary solutions of
Eq. (1). We set ≠C�≠t � 0, and solve the correspond-
ing ordinary differential equation with a Newton-Raphson
scheme [16]. Note that contrary to traveling wave configu-
rations, where stationary solutions are related to a nonlin-
ear wave number shift [17], in the cavity configuration this
is not the case, due to the presence of the driving field.
We do not explore all the variety of stationary solutions
that Eq. (1) can support. Instead, we restrict ourselves to
the stationary solutions that will play a role in our discus-
sion of bistability. We plot in Fig. 2 families of stationary
solutions corresponding to G � 0.15 and u � 0.4. Sta-
tionary solutions plotted in Fig. 2 can be divided into two
families. The curve labeled S corresponds to symmetric
solutions C0�j�, such that C0�j� � C0�2j�. The curve

FIG. 2. Families of stationary solutions. Curves labeled
S correspond to symmetric solutions, and curve labeled B
corresponds to broken-symmetry solutions. Parameters: G �
0.15 and u � 0.4.
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labeled B corresponds to a pair of broken-symmetry solu-
tions, C0�j� and C0�2j�. The curve S has three branches
defined by the sign of the slope of the curve in the fig-
ure, and we will refer to them as lower, middle, and upper
branches. Figure 3 shows the amplitude profiles of two
stationary solutions, one with broken symmetry and the
other with unbroken symmetry. Note the breaking of the
left-right symmetry of the output field relative to that of
the drive, for the broken-symmetry state.

To investigate the stability of the stationary solutions
plotted in Fig. 2, we solve Eq. (1) with a split-step
Fourier-transform algorithm [18]. We take as input
some selected slightly perturbed stationary solution
C�j, t � 0� � C0�j� �1 1 y�j��, where y�j� is a
complex Gaussian random variable for every value of
the transverse coordinate with mean m � 0 and typical
deviation s � 0.01, for both the real and imaginary parts.
The perturbative noise will seed any instability present in
the system. Since some of the stationary solutions have
broken symmetry, in order to monitor the time evolution
of the field, in addition to the peak amplitude, we will also
follow the centroid j̄, defined as

j̄�t� �

R`
2` jjC�j, t�j2R
`
2` jC�j, t�j2

. (3)

For a symmetric beam, j̄�t� � 0. After extensive numeri-
cal solutions, we find stable stationary solutions in the
lower branch of curve S, and in curve B below q �
1.48. This means that the outcomes of the simulations
are the corresponding stationary solutions C0 in each case.
Stationary solutions corresponding to all other parts of
curves S and B have been found to be unstable. In some
cases, the stability analysis leads to one of the corre-
sponding stable stationary solutions for a given ampli-
tude of the driving field, which one depending on the
noise. In other cases, the output is a time-varying pat-
tern that depends on the particular value of the peak am-

0

0.5

1

1.5

-10 -5 0 5 10

am
pl

it
ud

e

transverse coordinate

B

S

FIG. 3. Amplitude profiles of stationary solutions from the S
and B curves. Parameters: G � 0.15, u � 0.4, and q � 1.45.
Solid line: amplitude profile of the field. Dotted line: amplitude
profile of the driving field. Note the breaking of left-right
symmetry for B.
plitude of the driving field. In most cases, when the
stationary solution of the lower branch of curve S is not
excited, the output of simulations always shows that the
beam does not preserve the bilateral symmetry of the driv-
ing field. For values of the peak amplitude of the driving
field 1.37 ,� q ,� 1.48, there are three stable stationary
solutions. The one corresponding to the lower branch of
curve S possesses an unbroken symmetry, and the trans-
missivity, defined as the ratio of the output beam power
to the incident beam power, is low �� 1%�. The pair
of solutions corresponding to curve B, one displaced to
the left, the other to the right of the drive beam by equal
amounts, possesses broken symmetry. The transmissivity
of this pair of solutions is remarkably high �� 75%�. Thus
the nonlinear Fabry-Pérot cavity can be viewed as a non-
linear transmission device which selects out the broken-
symmetry solutions as the high-transmission modes of
the system.

Numerical simulations of Eq. (1) show that the sym-
metric state in the lower branch of curve S can be
excited after switching on the driving field with the ap-
propriate amplitude of the driving field. In order to

FIG. 4. Steplike excitation of two stable states for q � 1.45.
(a) Peak amplitude and (b) centroid. Parameters: G � 0.15,
u � 0.4, and q � 1.45. S corresponds to the excitation of
the stationary solution in the lower branch of curve S; B
corresponds to the excitation of the stationary solution in
curve B. Solid line: field. Dotted line: amplitude and centroid
of the driving field. Note the delay in the onset of spontaneous
symmetry breaking.
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FIG. 5. Ramplike excitation of two stable states for q � 1.45.
(a) Peak amplitude and (b) centroid. Parameters: G � 0.15,
u � 0.4, and q � 1.45. S corresponds to the excitation of
the stationary solution in the lower branch of curve S, and
B corresponds to the excitation of the stationary solution in
curve B. Solid line: field. Dotted line: amplitude and centroid
of the driving field.

excite the broken-symmetry states, a route to bistability
has to be properly devised. Which one of the two broken-
symmetry states is actually excited in the numerical
simulations shown in Figs. 4 and 5 depends on round-
off noise, and the method of excitation. One method is to
tune the amplitude of the driving field in a steplike way
to a value q . 1.98, so that a time-varying intermediate
output state associated with curve B is excited. Then the
amplitude of the driving field q is reset to the value where
the broken-symmetry state is stable. We plot an example
of such a route to tristability in Fig. 4. Note the delay on
the onset of the spontaneous symmetry breaking from the
time the drive is switched down. The actual excitation of
the broken-symmetry state depends on the characteristics
of the intermediate unstable state that is excited, and on
the duration of the round-trip time around the hysteresis
loop. Another way to excite the stable state in curve B
is to switch on the driving field and then to slowly ramp
it down. Figure 5 shows the actual excitation of both the
symmetric and broken-symmetry states by this method.
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The cavity configurations considered here have been
experimentally implemented [19] for the observation of
nonlinear modes and can be used for future observation
of this broken symmetry. Finally, how this broken
symmetry that we have found at the classical field level
manifests itself in the underlying quantum field theory is
a fascinating topic for further study.
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