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Better Nonlinear M odelsfrom Noisy Data: Attractorswith Maximum Likelihood
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A new approach to nonlinear modeling is presented which, by incorporating the global behavior of
the model, lifts shortcomings of both least squares and total least squares parameter estimates. Although
ubiquitous in practice, a least squares approach is fundamentally flawed in that it assumes independent,
normally distributed (IND) forecast errors: nonlinear models will not yield IND errors even if the noise
is IND. A new cost function is obtained via the maximum likelihood principle; superior results are
illustrated both for small data sets and infinitely long data streams.

PACS numbers: 05.45.Tp, 02.60.Pn

A nonlinear model must be tuned via parameter es- Given the correct model structuféx, a) and data gen-
timation, ideally forcing it to mimic the observations. erated by particular parametess (the “true” parameter
Typically, tuning aims for parameters which yield the leastvalues), a cost function is often used to obtain an estimate
squared error [1—3] (or total least squared error [4,5]) beef the unknown parametets. ldeally, this estimate con-
tween the one-step forecasts and the data. After prowerges taag in the limit of an infinite number of observa-
ing that even for the simplest nonlinear models both leastions. Complications of nonlinearity combined with the
squares and total least squares systematically reject the coendomness of unavoidable measurement errors suggests
rect parameter values (i.e., those that generated the data),likelihood analysis for parameter estimation. Indeed,
a new and more robust method is derived which incorboth least squares and total least squares are special cases
porates the global dynamics of the model (and hence itef the likelihood method.
attractor). Failure to recognize the effects of imper- The one-stepeast squares (LS) estimateas, is the
fect observations will lead to biased parameter estimatesalue ofa which minimizes the least squares cost function
whereas an inability to reflect the data indicates model er- No1
;or. The present Letterfocusgs on the first issue: using the CLs(a) = Z E2, )
act that one can always estimate the probability density =
function (PDF) of the model-state variable for different o
values of the unknown parameters, the maximum likeliWhereE; = si.; — F(s;,a), the one-step prediction error.
hood principle is employed to derive a new cost functionFigure 1 shows the failure of this well-known technique
which incorporates this information. This global approachwhen applied to the well-known logistic map [G}; = 2,
has the potential to outperform all one-step (or few-step)
methods, whether they are based on least squares criteria or
some future improvement. Note that even with an infinite
amount of data the optimal least squares solution is simply
incorrect; see Fig. 1 and the discussion below. The new
cost function is shown to yield results consistent with the
correct answer even for relatively small data sets and large
noise levels in a variety of chaotic systems. It is appli-
cable to high dimensional systems and may also be ap-
plied to nonlinear stochastic systems.

Suppose the evolution of a system’s state variahles
IR™, is governed by the map

Xi+1 = F(x;,a), 1) 05t LEAST SQUARES ESTIMATE —
where the model's parameters are contained in the vector 0 0.2 0.4 0.6 0.8 1
a € R!. Form = 1, the system state; is a scalar; as- noise level
suming additive measurement noigeyields observations FIG. 1. Least squares estimate @fas a function of noise
s; = x; + m;. In a noise free setting (i.en; = 0 V i), level using the analytic result (3) corresponding to an infinite
I + 1 sequential measurementss;, ..., si+; would, in data set. The underlying system is the logistic map with

_ ; . . ap = 2. Parameter is systematically underestimated for both
general, be sufficient to determiae With noise, the PDF normally distributed noise (solid), and uniformly distributed

of both the measurement noise and the model-state vafipise (dashed). Both deviate significantly from the correct
ables are required to estimategroperly. value (dot-dashed).
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yet aps < 2 at al nonzero noise levels, even for an infi-
nite data set. To seethis, first recall this one-dimensional
map F(x,a) = 1 — ax®. Writing the observed predic-
tion error, s;+1 — F(s;,a), explicitly in terms of the
underlying system state and a realization of the noise
process  yields E; = ;41 — agxi + a(x; + ;)%
When the least squares cost function (2) is a
minima >~ [E;dE;/da]l =0, and in the limit of
an infinitely long data set, this sum converges to an
integral over x taken with respect to the system’s invari-
ant measure, u(x,a). For a = 2 in the logistic map,
u(x,2) = 1/m+/1 — x2 for —1 = x = 1 and zero other-
wise. Thus(x?) = 1/2 and {(x*) = 3/8. Since (x") =0
for odd n [u(x,2) is an even function], if the distribution
of the noise process is also even, then

_ 4n? + 3
ws = (5om Saamy s} O

Equation (3) yields the parameter estimate corresponding
to an infinitely long data set as a function of noise level.
For uniformly distributed noise [i.e, 7 = U(—e,€)],
(n") = €"/(n + 1) for even n, while for normally
distributed noise [i.e, 7 < N(0,€2)], (n%) = € and
(n*) = 3€*, the noise level is defined as o noise/ Tsignal,
where opoise @d 0agna @€ the variances of the
noise and the signal, respectively; for the uniform case
2o = €2/3, whereas o2, = €2 for the normal case.
Despite having a complete knowledge of the measure-
ment process and data of infinite duration, the parameter
estimates are biased.

Let (x;,x;+1) denote a successive pair of system states
corresponding to observations (s;, s;+1) where

si=xitmn M SN, €Y. €

The system variables (x;,x;+1) are sometimes called
latent variables, due to the fact that they cannot be
measured directly [7]. They are fixed yet unknown,
and therefore all probabilities ought to be conditiona
on the x;. In general, the probability of observing the
pair (s;,s;+1) depends on the model parameters a, the
system variable x; at time i, its image F(x;,a), and
the measurement process. Specificaly,

1
P(si’si+] |a9x) = 27T62
where

di (siysiv1,x,2) = (5; — x)* + [5;41 — F(x,a)]*. (6)
Assuming the s; and s;+; are independent, the proba-

bility of observing a sequence of N — 1 pairs, S =
{(si,si+1)¥=,", corresponding with a particular set of
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model states X = {x;}\;!, is given by the joint PDF:
N—1
P(Sla,X) = l_[ P(si,si+1la,%). (7
i=1

Identifying the likelihood of parameters a generating
the data S with the probability of observing data S given
that the model has parameters a (see [8]) yields

L(a,X|S) = P(S|a,X), (8)

where the conditional status of the model-state variables
isexplicit. Subgtituting (5) and (7) in (8) yields

) | | ANzl
L(a,X|S) = —(2762)]\“1 exp(——Ze2 Z d?) 9)
i=1

L(a,X|S) depends on the PDF of the likely model
states and the parameters which maximize (9) will vary
with the assumptions made regarding this distribution.
These assumptions are paramount to this Letter; ignoring
information from the distribution will lead to total least
squares (TLS), whereas requiring consistency between the
data and the PDF of the model-state variables yields the
new cost function below. Casellaand Berger [7] compare
these assumptions for linear systems.

Ignoring the PDF of the model-state variables, total
least squares resolves the dependence on %; by substitut-
ing any values x; which maximize L(a|S), that is

1 =
L@l|S) = m exp(—ﬁ 1 )[Tél]gdl->. (20)

i=

The maximum of L(a,S) then corresponds to the mini-
mum of the associated TLS cost function

N—1
C = mind?. 11
TLs(a) 1:21 NS ( )

Thus, while the least squares cost function (2) minimizes
the squared vertical distances d? = [s;+1 — F(s;,a)]?,
the TLS solution minimizes the squared perpendicular
distances (6) between the measured point (s;,s;+;) and
a point on the hypersurface [%, F(¥,a)]. No restrictions
are placed on the values %;,i = 1,N: the X; are not a
trajectory of F(x,a) nor do they reflect w(x,a). Using
the particular %; which minimizes each d7 reflects the
decision to ignore any knowledge of the PDF of the
model-state variables. But, given that the model is always
in hand, the PDF of the model, w(x,a), is aways
obtainable (not that of the system, but of the model). This
additional information may be incorporated by integrating
the dependence on x; out of the likelihood function in (9),
yielding

N—1
L@l$) = [T [ Plusinlavduta, @2
i=1 Jx
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and associated maximum likelihood (ML) cost function

N-1 d42
Cur(a) = — Z log exp<—2—6’2>du(x,a)- (13)

Equation (13) is the main result of this Letter; it is
superior to both CLs and Cts. In practice, theintegral in
(13) is usually replaced by a sum over a model trajectory
whose length, 7 > N, is limited only by computational
constraints. Thus

N—-1 T
Cu(a) ~ = > Iog(z exp| - Sl
i=1 k=1

+ (si+1— Xk+1)2]D ,

(14)
where x;, = F*(xp,a) and x, is any posttransient value
F(x,a) intherelevant basis of attraction. For fixed N this
can be computed efficiently [9]. As T — o, the particular
value of xq is irrelevant since the sum is dominated by
those values of k for which s; = x; and s;+1 = xi+1, the
particular values of k being irrelevant.

The logistic map’s invariant measure varies drastically
for different values of a. The bifurcation diagram (see
Fig. 2a) illustrates this behavior in therange 1.5 = a =
2. With gy = 2 and a noise level of 0.19, a; 5 = 1.7
(see Fig. 1); note from Fig. 2a that this corresponds to a
model with a period three orbit. Obvioudly, values of a
corresponding with periodic windows are unlikely to be
responsible for a data set with wildly aperiodic behavior.

0.75
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FIG. 2. Logistic map: (a) bifurcation diagram illustrating the
variation in w(x,a), (b) distribution of estimates contrasting
the LSTLS, and ML cost functions from 1000 realizations

where ag = 1.85, N = 100, with normally distributed noise.
The shading reflects the 95% limits, the solid line the mean.

Equation (14) allows this visualy obvious result to be
included implicitly into a cost function.
The TLS cost function for the logistic map may be

obtained analytically by solving the cubic equation
9d?
a—d' = 4a’x} + [2 + 4(s;+1 — Dalx; — 2s; =0,
Xi
(15)

and taking the root satisfying 92d?/dx? > 0. Results for
three different cost functions are shown in Fig. 2. While
the TLS cost function is much better than that of LS, the
ML cost function is better still for all cases considered.
Results are shown for data sets N = 100; for larger N the
TLS solution improves, but in al cases tested the spread
of the distribution remains smaller for the ML estimate.
The simplicity of the logistic map makes it a weak test
case and motivates further trials.

The Moran-Ricker map [10] has a functional form
F(x,a) = xexpla(l — x)]; its invariant measure (not
shown) alows larger values of x with larger parameter
values a. Figure 3 illustrates the results for each cost
function where ay = 3.7 and N = 100. The ML cost
function consistently yields the best estimates for all noise
levels considered. While it is common to claim an al-
gorithm generalizes to higher dimensional cases, this al-
gorithm is easily generalized to m > 1 by substituting
the term [||s; — H(xy)||] for the term [(s; — xx)?] in
Eqg. (14). Here the function H projects the system state
vector x into the space of observationss. In delay coor-
dinates, this corresponds to taking the “last” component
of x,. Figure 4 shows results for the two-dimensiona
Hénon map [11] in delay coordinates, F(x;,x;—1) = 1 —
ax} + bx;_;, where ap = 1.4 and by = 0.3. While the
ML cost function surface is more highly structured due to
sensitivity to the parameters, its minima are in the rele-
vant regions as opposed to the smooth but incorrect LS
minimum. The LS cost function has a biased minima,

7

0 0.1 0.2 0.3 0.4 05
noise level

FIG. 3. Moran-Ricker map: a comparison of LSTLS, and ML
cost functions for 200 redlizations with ay = 3.7, N = 100
with normally distributed measurement errors. The shading is
asin Fig. 2.
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FIG. 4. Value of cost function in parameter space for a 2D
delay reconstruction of the Hénon map for ag = 1.4, by = 0.3,
N = 500, and a noise level of 0.05: (8) Crs and (b) Cyy.

while ML is consistent with (ag, bg). Whether this con-
sistency is worth the computation depends on the prob-
lem at hand. Certainly the fact that ensemble forecasts
of chaotic models using the ML estimates will relax
naturally to a distribution consistent with w(x,a) is of
value [12]. Better estimates of a also alow improved
long term deterministic forecasts. The fact that higher di-
mensional models may require much larger data sets is
a problem of uniqueness under the observations and can-
not be laid at the door of the cost function. In Fig. 4,
N = 500 and the noise level is 0.05. Equation (14) also
alows an estimate of the magnitude of dynamical noisein
a stochastic system [12] when the shape of the distribution
of the noise is correctly specified.

Both least squares (2) and total least squares (11) are
inferior to the maximum likelihood cost function (13).
Including the information on the invariant measure of the
model aids in the pursuit of reliable parameter estimates
for nonlinear models. The weakest link in the derivation
of the ML cost function is the assumption that the s;
and s;1+1 are independent; while they may be linearly
uncorrelated, they cannot be independent. Attempts to
relax this assumption will be presented in later work; here
we note that (13) may be viewed as the first member of
the family of cost functions:

® N—n d(”)z
i =3 [ oo~ Jantra. (o
i=1
where
&' = [siv; = Fla)Ps (17)
j=0
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For n > 0, C(M")L(a) is a multistep cost function [3,13]
moderating the assumption that the s; are independent, the
aim being to find parameter values which both have the
correct PDF and shadow the observations [12,13]. The ul-
timaten = N — 1 multistep least squares approach, solv-
ing simultaneously for xo and a, may prove intractable for
N = 500 (see[14]). Futurework will also focus upon the
choice of optimal model order in local polynomial predic-
tion, and the interpretation of cost functions when the un-
derlying model structure is unknown [15].
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