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Better Nonlinear Models from Noisy Data: Attractors with Maximum Likelihood
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A new approach to nonlinear modeling is presented which, by incorporating the global behavior o
the model, lifts shortcomings of both least squares and total least squares parameter estimates. Altho
ubiquitous in practice, a least squares approach is fundamentally flawed in that it assumes independ
normally distributed (IND) forecast errors: nonlinear models will not yield IND errors even if the noise
is IND. A new cost function is obtained via the maximum likelihood principle; superior results are
illustrated both for small data sets and infinitely long data streams.
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A nonlinear model must be tuned via parameter
timation, ideally forcing it to mimic the observation
Typically, tuning aims for parameters which yield the lea
squared error [1–3] (or total least squared error [4,5])
tween the one-step forecasts and the data. After p
ing that even for the simplest nonlinear models both le
squares and total least squares systematically reject the
rect parameter values (i.e., those that generated the d
a new and more robust method is derived which inc
porates the global dynamics of the model (and hence
attractor). Failure to recognize the effects of impe
fect observations will lead to biased parameter estima
whereas an inability to reflect the data indicates model
ror. The present Letter focuses on the first issue: using
fact that one can always estimate the probability den
function (PDF) of the model-state variable for differe
values of the unknown parameters, the maximum like
hood principle is employed to derive a new cost functi
which incorporates this information. This global approa
has the potential to outperform all one-step (or few-st
methods, whether they are based on least squares crite
some future improvement. Note that even with an infin
amount of data the optimal least squares solution is sim
incorrect; see Fig. 1 and the discussion below. The n
cost function is shown to yield results consistent with t
correct answer even for relatively small data sets and la
noise levels in a variety of chaotic systems. It is app
cable to high dimensional systems and may also be
plied to nonlinear stochastic systems.

Suppose the evolution of a system’s state variable,xi [
4m, is governed by the map

xi11 � F�xi , a� , (1)

where the model’s parameters are contained in the ve
a [ 4l . For m � 1, the system statexi is a scalar; as-
suming additive measurement noisehi yields observations
si � xi 1 hi. In a noise free setting (i.e.,hi � 0 ; i),
l 1 1 sequential measurementssi , si11, . . . , si1l would, in
general, be sufficient to determinea. With noise, the PDF
of both the measurement noise and the model-state v
ables are required to estimatea properly.
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Given the correct model structureF�x, a� and data gen-
erated by particular parametersa0 (the “true” parameter
values), a cost function is often used to obtain an estim
of the unknown parametersa0. Ideally, this estimate con-
verges toa0 in the limit of an infinite number of observa
tions. Complications of nonlinearity combined with th
randomness of unavoidable measurement errors sugg
a likelihood analysis for parameter estimation. Indee
both least squares and total least squares are special
of the likelihood method.

The one-stepleast squares (LS) estimate,aLS, is the
value ofa which minimizes the least squares cost functi

CLS�a� �
N21X
i�1

E2
i , (2)

whereEi � si11 2 F�si , a�, the one-step prediction error
Figure 1 shows the failure of this well-known techniqu
when applied to the well-known logistic map [6]:a0 � 2,

FIG. 1. Least squares estimate ofa as a function of noise
level using the analytic result (3) corresponding to an infin
data set. The underlying system is the logistic map w
a0 � 2. Parametera is systematically underestimated for bot
normally distributed noise (solid), and uniformly distribute
noise (dashed). Both deviate significantly from the corre
value (dot-dashed).
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yet aLS , 2 at all nonzero noise levels, even for an infi-
nite data set. To see this, first recall this one-dimensional
map F�x, a� � 1 2 ax2. Writing the observed predic-
tion error, si11 2 F�si , a�, explicitly in terms of the
underlying system state and a realization of the noise
process yields Ei � hi11 2 a0x2

i 1 a�xi 1 hi�2.
When the least squares cost function (2) is a
minima

PN
i�1�Ei≠Ei�≠a� � 0, and in the limit of

an infinitely long data set, this sum converges to an
integral over x taken with respect to the system’s invari-
ant measure, m�x, a�. For a � 2 in the logistic map,
m�x, 2� � 1�p

p
1 2 x2 for 21 # x # 1 and zero other-

wise. Thus �x2� � 1�2 and �x4� � 3�8. Since �xn� � 0
for odd n [m�x, 2� is an even function], if the distribution
of the noise process is also even, then

aLS �

µ
4�h2� 1 3

8�h4� 1 24�h2� 1 3

∂
a0 . (3)

Equation (3) yields the parameter estimate corresponding
to an infinitely long data set as a function of noise level.

For uniformly distributed noise [i.e., h
d
� U�2e, e�],

�hn� � en��n 1 1� for even n, while for normally

distributed noise [i.e., h
d
� N�0, e2�], �h2� � e2 and

�h4� � 3e4, the noise level is defined as snoise�ssignal,
where s

2
noise and s

2
signal are the variances of the

noise and the signal, respectively; for the uniform case
s

2
noise � e2�3, whereas s

2
noise � e2 for the normal case.

Despite having a complete knowledge of the measure-
ment process and data of infinite duration, the parameter
estimates are biased.

Let �xi , xi11� denote a successive pair of system states
corresponding to observations �si , si11� where

si � xi 1 hi , hi
d
� N�0, e2� . (4)

The system variables �xi , xi11� are sometimes called
latent variables, due to the fact that they cannot be
measured directly [7]. They are fixed yet unknown,
and therefore all probabilities ought to be conditional
on the xi . In general, the probability of observing the
pair �si , si11� depends on the model parameters a, the
system variable xi at time i, its image F�xi , a�, and
the measurement process. Specifically,

P�si , si11 j a, x� �
1

2pe2 exp

µ
2

d2
i

2e2

∂
, (5)

where

d2
i �si , si11, x, a� � �si 2 x�2 1 �si11 2 F�x, a��2. (6)

Assuming the si and si11 are independent, the proba-
bility of observing a sequence of N 2 1 pairs, S �
��si , si11�	N21

i�1 , corresponding with a particular set of
4286
model states X̃ � �x̃i	N21
i�1 , is given by the joint PDF:

P�S j a, X̃� �
N21Y
i�1

P�si , si11 j a, x̃i� . (7)

Identifying the likelihood of parameters a generating
the data S with the probability of observing data S given
that the model has parameters a (see [8]) yields

L�a, X̃ jS� � P�S j a, X̃� , (8)

where the conditional status of the model-state variables
is explicit. Substituting (5) and (7) in (8) yields

L�a, X̃ jS� �
1

�2pe2�N21 exp

0@2
1

2e2

N21X
i�1

d2
i

1A . (9)

L�a, X̃ jS� depends on the PDF of the likely model
states and the parameters which maximize (9) will vary
with the assumptions made regarding this distribution.
These assumptions are paramount to this Letter; ignoring
information from the distribution will lead to total least
squares (TLS), whereas requiring consistency between the
data and the PDF of the model-state variables yields the
new cost function below. Casella and Berger [7] compare
these assumptions for linear systems.

Ignoring the PDF of the model-state variables, total
least squares resolves the dependence on x̃i by substitut-
ing any values x̃i which maximize L�a jS�, that is

L�a jS� �
1

�2pe2�N21 exp

√
2

1
2e2

N21X
i�1

min
x[4

d2
i

!
. (10)

The maximum of L�a, S� then corresponds to the mini-
mum of the associated TLS cost function

CTLS�a� �
N21X
i�1

min
x[4

d2
i . (11)

Thus, while the least squares cost function (2) minimizes
the squared vertical distances d2

i � �si11 2 F�si , a��2,
the TLS solution minimizes the squared perpendicular
distances (6) between the measured point �si , si11� and
a point on the hypersurface �x̃, F�x̃, a��. No restrictions
are placed on the values x̃i , i � 1, N : the x̃i are not a
trajectory of F�x, a� nor do they reflect m�x, a�. Using
the particular x̃i which minimizes each d2

i reflects the
decision to ignore any knowledge of the PDF of the
model-state variables. But, given that the model is always
in hand, the PDF of the model, m�x, a�, is always
obtainable (not that of the system, but of the model). This
additional information may be incorporated by integrating
the dependence on xi out of the likelihood function in (9),
yielding

L�a jS� �
N21Y
i�1

Z
x

P�si , si11 j a, x�dm�x, a� , (12)
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and associated maximum likelihood (ML) cost function

CML�a� � 2

N21X
i�1

log
Z

x
exp

µ
2

d2
i

2e2

∂
dm�x, a� . (13)

Equation (13) is the main result of this Letter; it is
superior to both CLS and CTLS. In practice, the integral in
(13) is usually replaced by a sum over a model trajectory
whose length, t ¿ N , is limited only by computational
constraints. Thus

CML�a� 
 2

N21X
i�1

log

√
tX

k�1

exp

(
2

1
2e2 ��si 2 xk�2

1 �si11 2 xk11�2�

)!
,

(14)

where xk � Fk�x0, a� and x0 is any posttransient value
F�x, a� in the relevant basis of attraction. For fixed N this
can be computed efficiently [9]. As t ! `, the particular
value of x0 is irrelevant since the sum is dominated by
those values of k for which si 
 xk and si11 
 xk11, the
particular values of k being irrelevant.

The logistic map’s invariant measure varies drastically
for different values of a. The bifurcation diagram (see
Fig. 2a) illustrates this behavior in the range 1.5 # a #

2. With a0 � 2 and a noise level of 0.19, aLS � 1.7
(see Fig. 1); note from Fig. 2a that this corresponds to a
model with a period three orbit. Obviously, values of a
corresponding with periodic windows are unlikely to be
responsible for a data set with wildly aperiodic behavior.

FIG. 2. Logistic map: (a) bifurcation diagram illustrating the
variation in m�x, a�, (b) distribution of estimates contrasting
the LS,TLS, and ML cost functions from 1000 realizations
where a0 � 1.85, N � 100, with normally distributed noise.
The shading reflects the 95% limits, the solid line the mean.
Equation (14) allows this visually obvious result to be
included implicitly into a cost function.

The TLS cost function for the logistic map may be
obtained analytically by solving the cubic equation

≠d2
i

≠xi
� 4a2x3

i 1 �2 1 4�si11 2 1�a�xi 2 2si � 0 ,

(15)

and taking the root satisfying ≠2d2
i �≠x2

i . 0. Results for
three different cost functions are shown in Fig. 2. While
the TLS cost function is much better than that of LS, the
ML cost function is better still for all cases considered.
Results are shown for data sets N � 100; for larger N the
TLS solution improves, but in all cases tested the spread
of the distribution remains smaller for the ML estimate.
The simplicity of the logistic map makes it a weak test
case and motivates further trials.

The Moran-Ricker map [10] has a functional form
F�x, a� � x exp�a�1 2 x��; its invariant measure (not
shown) allows larger values of x with larger parameter
values a. Figure 3 illustrates the results for each cost
function where a0 � 3.7 and N � 100. The ML cost
function consistently yields the best estimates for all noise
levels considered. While it is common to claim an al-
gorithm generalizes to higher dimensional cases, this al-
gorithm is easily generalized to m . 1 by substituting
the term �jjsi 2 H�xk�jj� for the term ��si 2 xk�2� in
Eq. (14). Here the function H projects the system state
vector x into the space of observations s. In delay coor-
dinates, this corresponds to taking the “ last” component
of xk . Figure 4 shows results for the two-dimensional
Hénon map [11] in delay coordinates, F�xi , xi21� � 1 2

ax2
i 1 bxi21, where a0 � 1.4 and b0 � 0.3. While the

ML cost function surface is more highly structured due to
sensitivity to the parameters, its minima are in the rele-
vant regions as opposed to the smooth but incorrect LS
minimum. The LS cost function has a biased minima,

FIG. 3. Moran-Ricker map: a comparison of LS,TLS, and ML
cost functions for 200 realizations with a0 � 3.7, N � 100
with normally distributed measurement errors. The shading is
as in Fig. 2.
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FIG. 4. Value of cost function in parameter space for a 2D
delay reconstruction of the Hénon map for a0 � 1.4, b0 � 0.3,
N � 500, and a noise level of 0.05: (a) CLS and (b) CML.

while ML is consistent with �a0, b0�. Whether this con-
sistency is worth the computation depends on the prob-
lem at hand. Certainly the fact that ensemble forecasts
of chaotic models using the ML estimates will relax
naturally to a distribution consistent with m�x, a� is of
value [12]. Better estimates of a also allow improved
long term deterministic forecasts. The fact that higher di-
mensional models may require much larger data sets is
a problem of uniqueness under the observations and can-
not be laid at the door of the cost function. In Fig. 4,
N � 500 and the noise level is 0.05. Equation (14) also
allows an estimate of the magnitude of dynamical noise in
a stochastic system [12] when the shape of the distribution
of the noise is correctly specified.

Both least squares (2) and total least squares (11) are
inferior to the maximum likelihood cost function (13).
Including the information on the invariant measure of the
model aids in the pursuit of reliable parameter estimates
for nonlinear models. The weakest link in the derivation
of the ML cost function is the assumption that the si

and si11 are independent; while they may be linearly
uncorrelated, they cannot be independent. Attempts to
relax this assumption will be presented in later work; here
we note that (13) may be viewed as the first member of
the family of cost functions:

C
�n�
ML�a� �

N2nX
i�1

Z
exp

µ
2

d
�n�2
i

2e2

∂
dm�xi , a� , (16)

where

d
�n�2
i �

nX
j�0

�si1j 2 Fj�xi , a��2. (17)
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For n . 0, C
�n�
ML�a� is a multistep cost function [3,13]

moderating the assumption that the si are independent, the
aim being to find parameter values which both have the
correct PDF and shadow the observations [12,13]. The ul-
timate n � N 2 1 multistep least squares approach, solv-
ing simultaneously for x0 and a, may prove intractable for
N � 500 (see [14]). Future work will also focus upon the
choice of optimal model order in local polynomial predic-
tion, and the interpretation of cost functions when the un-
derlying model structure is unknown [15].
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